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1 Introduction

The aim of this thesis is to describe how ontologies can be used to create better image
annotation and retrieval systems. In a nutshell, ontologies are used to overcome the
problems that evolve from traditional text-based information retrieval when it is applied
to images.

Text-based information retrieval is lexically motivated rather than conceptually moti-
vated, which leads to irrelevant search results in information retrieval. Lexically moti-
vated means that text-based retrieval operates on the word-level, and not on the level
of the meaning of words. The very idea of ontologies is that they are conceptually mo-
tivated, i.e., can be used to express the intended meaning of things, and not just words
as textual strings.

The common techniques that are developed for document retrieval in general may be
applied to metadata-based image retrieval without modification, and also the techniques
and methods represented in this thesis in the scope of image retrieval can be applied to
document retrieval in general. Hence, the majority of the methods represented in this
thesis can be applied to all information retrieval.

In this thesis, a domain model is built using a formal ontology language, and the model
is used as the information source and basis of the information retrieval structure of
a photograph exhibition system. The domain model and the exhibition system are
examined in detail. The domain model that is built is called a domain ontology, and
ontologies are explained starting from the earliest philosophical notions until to the latest
scientific publications concerning image retrieval.

1.1 Annotation and Retrieval

Annotation stands for the process of describing images, and retrieval stands for the
process of finding images. The two major approaches to image retrieval are content-
based image retrieval that analyzes the actual image data, and metadata-based approach
that retrieves images based on human-annotated metadata. Also relevance feedback
has been used in image retrieval complementing text-based systems. In this thesis the
retrieval is done by using the annotated metadata, and not the content-based analysis
or relevance feedback. The research problem is: ”How should the metadata be created
and what kind of system could interpret the metadata to make it easy to find images for
an average user?”

The metadata that describes images can be roughly divided in two parts. One part
concerns the concepts that give information about the creator of the image, tools used
in the process of creating the image, art style of the image and the artist, price, and
other explicit properties of the image. The other part describes what is actually in the
image, the implicit properties that can be understood by percepting the image itself.
These two parts cannot be cleanly separated, and both have to be taken into account
when analyzing an image.
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1.2 Semantic Interpretation of Image

There are no commonly agreed vocabularies or methods to analyze images among muse-
ums’ curators, art critics, semiotics, aesthetics, philosophers, artists, and scientists. An
overview of the terms used in image analysis is given in appendix B, and the central
concepts around perception of image are briefly discussed in the following.

Figure 1 depicts the entities that are present whenever an image is percepted visually.
The perceptor (spectator) confronts (tuché) an image (spectrum) created by an artist

Image

Perceptor

World

Image

Environment of Perception

Artist with a device

Subject of Image

Figure 1: The artist constrains a view of the world with a device, according to Lachan’s
idea of photography [136].

(operator) [12]. The environment of perception is the place where the image is seen and
includes all the factors that have affect on the perceptor’s interpretation1

The perceptor sees the physical elements of the image. With printed images the physical
elements constitute of the ink and the paper where the ink is printed on, or only of the
ink if the paper is transparent. In a negative the physical elements are the silver-nitrates
that form the image and in digital images the finite set of pixels P with specified RGB-
and other values. A single physical element might cover the total area of the image but
in the usual case many clearly distinguishable subsets of P can be picked out. After
the physical elements have been percepted the perceptor subconsciously connects them
to a set of abstract elements, learned concepts in the perceptor’s inner model of the
world. Physical elements are in relation with abstract elements, which is called here
resemblance.

1One fundamental part of the environment other than the image itself is the possible reference text.
Reference text is different from possible text in the image [50], which would definitely be part of the
image, but relationships with the image and an unattached text vary between a short title and an
exhaustive analysis [85].
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Figure 2 is examined as an example of interpreting an image. The combined features of
the face resemble smile. The hands are geometrically upper than the head and the body,
which resembles hands upwards. The person is wearing sports-clothes with a number
and commercial tags on them. These together with the audience resemble competition.
Smile, hands upwards, and competition all together resemble strongly a triumph.

Competition

Smile TRIUMPH

Hands upwards

Figure 2: A photograph representing triumph.

It could be said that triumph is a higher-order resemblance than the others because it is
derived from smile, hands upwards, and competition. Depending on the abstraction
level, none of the abstract elements marked on figure 2 directly resemble the physical
elements. It is easy to analyze images on this level of abstraction but doing the same
thing automatically with computers is very hard (appendix A). This is why only the
abstract elements specified by human annotators are used as the basis of image retrieval
and annotation in this thesis.

There are so many possible resemblances of the physical elements that any image, even
an empty one, can have myriads interpretations. This indicates that no image can be
annotated absolutely perfectly, i.e., it is essential that the annotator has a certain inten-
sion in the annotation, and knows approximately how the annotations will be used. If
the intended usage of the annotations is unclear, the annotator should annotate also the
direct resemblances in addition to the clearest indirect resemblances. When all the di-
rect resemblances have been annotated, semantic ontologies can be used to reason about
the indirect resemblances without further manual annotations. Ontologies can also be
used to specify that a concept such as triumph consists of many possible permutations
of resemblances of different physical and abstract elements such as smile and hands

upwards, and so an image that has only one annotation like triumph, probably con-
tains some general elements that triumph consists of. Therefore, ontologies provide a
promising aid in semantic image retrieval.
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1.3 Semantic Web Ideology

The Semantic Web techniques can be used used to reason about the relations of the
abstract elements of images. The idea of the Semantic Web [17, 135] is to use the
arising XML- and RDF-based standards (sect. 3.2.2) to serve as common norms of
all information representation and description on the Internet. These languages and
frameworks are recommendations of the World Wide Web Consortium W3C [158] that
is a very influential international consortium in the Semantic Web field. Ontologies are
used as the new means of creating and using the metadata in annotation and retrieval.
In addition to searching just character strings within a natural language text, intended
meanings of words and contexts surrounding plain-text representations can be created
and used with ontology-based languages and tools.

Ontology frameworks have gained popularity since the 90’s with an increasing pace.
Ontology research is a hot topic in today’s computer science and the development of the
Semantic Web is tied with ontologies. Ontologies provide an easy and feasible way of
capturing a shared understanding of terms that can be used by humans and programs
to aid in information exchange. Computer science gives us the technique to express
ontologies efficiently in a useful way, and Internet is the ideal testing ground for ontology-
based applications.

The contents of this thesis are introduced in the following:

Section 2 gives an overview to digital photograph archival techniques. Examples of
annotating and retrieving images with different paradigms are given.

Section 3 discusses the common theoretical aspects of ontologies as well as modern
formal ontology frameworks and languages with the scope on standard Semantic Web
ontology languages.

Section 4 gives a case-study about using ontologies in practice. The section is divided
into 1) creation of an ontology, and using the created ontology in 2) image annotation
and in 3) image retrieval.

Section 5 discusses what has been accomplished and evaluates the usefulness of ontology-
based approach in image annotation and retrieval, and in building a domain model.

Appendices further examine some aspects of the actual thesis. Appendix A examines
content-based image retrieval and how ontologies can be integrated with the content-
based image retrieval. Appendix B examines the terms that are used in image analysis.
Appendix C examines some well known philosophical and formal ontologies.
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2 Image Annotation and Retrieval Techniques

This section gives an overview to the techniques that are used in digital image annotation
and retrieval, but may the data be in any form, there are fundamental similarities in the
process of annotating and retrieving it.

Different organizations do not share a generally accepted standard description model to
be used with photograph collections [89]. Even though most of the organizations use
standards approved by ISO [81] or ANSI [3], there is a wide variety of guidelines ranging
from specific photography guidelines such as FOTIOS [48], library standards like AACR2
[1] and ISBN [80], to archival standards like ISAD(G) [79] and general thesauri such as
YSA [161]. Institutions have also developed their own guidelines. One explanation of
this patchwork of different guidelines is that institutions aim to include photographic
materials into their general description and cataloging system. An exclusive standard
for photographic materials might conflict with specific institutional guidelines, and in
this case the same search facility is used for all materials.

Even thought the used systems are very heterogeneous, they use features of the three
basic image retrieval paradigms, which can be seen as generic types of the techniques
that are actually used with applications. In the following these three generic paradigms
[155] are discussed and examples of annotation and retrieval are given using images
about the promotion happening, that is also the subject domain of the case example in
section 4. Text-based, field-based, and structure-based paradigms are presented in order
of simplicity and can be seen as extensions of one another. The Content-based paradigm
differs greatly from the others because it is not metadata-based, and so it is explained
in appendix A.

2.1 Text-Based Paradigm

Text-based (also called keyword-based) methods are so general that they have to be
used up to some degree with all the paradigms. Everything can be described with
natural language but it is hard to solve the intended meaning of a textual description
automatically with computers. This is why different semantically oriented techniques
have been created to support text-based information retrieval.
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2.1.1 Text-Based Annotation

Annotating images with the text-based paradigm is very simple. The annotator has
to write a textual description of a photo using natural language. After the description
has been created it is linked to an image. The image text of figure 3 corresponds to
a text-based annotation, and contains information about both the explicit and implicit
properties (sect. 1.1) of the image. To facilitate the retrieval the annotators have to take

Figure 3: Promotion of faculty of Philosophy 1886. General garland binder Hedvig
Estlander posing with her garland. Photographing Studio: Daniel Nyblin

in account the possible use of thesauri that constrain and guide the use of vocabulary.
A thesaurus is a collection of natural language words that specifies the vocabulary of
some specific domain. Anything can be described in myriads of ways if all the words
of English or another commonly used language are in use. With a vastly narrower set
of words the annotations are surely more homogeneous and the creation of queries is a
much simpler task because the used vocabulary is known.

Thesauri may contain relationships of words such as synonyms but specifying more com-
plex relationships such as homonyms, hyponyms, meronyms, and antonyms require a
richer level of formality than thesauri usually have. With thesauri it is also easier to
map existing descriptions between different languages because only those words that are
included in the thesaurus have to be used. There are a number of domain-specific the-
sauri available such as the Art and Architecture Thesaurus [118] that has vocabulary to
describe art, architecture, decorative arts, material culture, and archival materials. The
coverage of the AAT ranges from Antiquity to the present, and the scope is global. The
Library of Congress Subject Headings [98] is a thesaurus that aims in classification of
uniform and unique headings, provision of direct access to specific subjects, stability, and
consistency. An image-centered Iconclass [76] is a collection of ready-made definitions
of objects, persons, events, situations and abstract ideas that can be the subject of an
image. There are thesauri (or lists) also for very common words (e.g., in, a, and, the,
for) to exclude these from a search.

Assuming that the thesaurus is descriptive enough for the domain, the only disadvantage
is that the annotators and retrievers have to check out the valid words with an explicit
thesaurus browser, i.e., they cannot just write what comes first in mind.
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2.1.2 Text-Based Retrieval

In the retrieval sense, photos that are annotated with plain text behave similarly to
plain text documents because both contain text, which can be exploited by conventional
text-based retrieval techniques.

The generic text-based information retrieval is carried on so that first a user types a
query that consists of 1 to n keywords into a query field of a search interface. The search
engine compares the keywords with a set of documents gathered from a database and
gives them priority values. For example, if the keyword is book, document A contains
two instances of book and document B contains only one instance, then A gets a higher
priority. The documents are presented to the user, highest priority first.

When the size and amount of the documents grows, the classical problems of text-based
information retrieval start raising. Irrelevant documents are retrieved and the user has to
use time filtering the information again, usually by browsing through the search results.
The fitness of generic text-based retrieval is depicted in figure 4 [86]. When the recall
gets higher the precision gets lower, and when precision gets higher the recall gets lower.

Discarded

Sum

Found
Relevant Irrelevant

a+b                  a                     b        

c+d                  c                     d

a+b+c+d        a+c                 b+d
0 1

1

Objective

Recall

Precision

recall = a

a+c
precision = a

a+b

1≥ recall ≥ 0 1 ≥ precision ≥ 0

Figure 4: Symbols a, b, c, and d represent the members of the documents that are subject
of the search. The graph represents a usual relation between recall and precision. The
fitness of recall and precision can be calculated with the equations.

Some techniques that facilitate the text-based search are discussed next. The main
principle of the vector-model [133, 22] is to index documents that consist of text into a
matrix including statistical information such as the amount of appearances of different
words in a document and the location of the words in the document. This is radically
faster than to search directly from the documents, even with optimized character parsing
techniques [93, 19]. The vector-model also provides the search algorithms a structured
basis to start the reasoning with.

Stemming uses morphological relations of words to find a part2 of a word that is common
to all or most of the forms of the word. For example, if the query term running is used
with the stemming-option on, the engine would not just search for running but also run,
runnable, runner, etc. A user can create queries such as run* that have the same effect

2In most of the cases the beginning of words.
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as the stemming. The unknown * can be also situated in the beginning, in the middle, or
in any place within a word or a phrase, possibly many times within one word or phrase.

With boolean search one can define the wanted relations of the search terms with logical
connectives and ∧, or ∨, not ¬. The user can also set search constraints to find documents
where a certain word is near, before, or after another.

These kinds of techniques have been created to overcome the bottlenecks that evolve
from keyword-based search but they are only ’pain-killers’, not a ’cure’ to the problem.
Because these techniques are not alone sufficient, other more semantically oriented tech-
niques have been taken in use in addition to the thesauri. There are probability models
used for reasoning about documents’ usefulness. These models analyze phrase constructs
and take the structure of a document in account. Many documents, especially Web pages,
have hyperlinks to other documents. Search engines (e.g., Google [55], CiteSeer [24]) can
reason about documents’ usefulness not only by indexing them but also by researching
other documents to find the most referenced ones.

As an example of text-based image retrieval, the retriever’s goal is to find images where
can be seen a general garland binder and garland in the same image3. The retriever
types the keywords: General garland binder ∧ Garland. The search engine compares
the keywords general, garland, and binder to all image annotations in the system. A
set of annotations match with the query because all of them contain the keywords. Some
of the result are depicted in figure 5.

Figure 5: A subset of images that matched the query.

A large percentage of the images in figure 5 have no garland, which indicates a rela-
tively low precision. The basic problem is that text-based search does not even try to
understand the meaning of words and sentences, which is quite natural: understanding
of a textual string would be an unsolvable problem for a machine because a correct in-
terpretation of a short phrase such as a query or an annotation could be impossible also
for humans without any knowledge of the retriever’s goal or the specific context under
which the query should be handled.

Another common approach to making text-based information retrieval more robust in-
volves keyword expansion using a thesaurus or other lexical resource. However, keyword
expansion using thesauri is limited in its usefulness because keywords expanded by their
synonyms can still only retrieve documents directly related to the original keyword. Fur-
thermore, a naive synonym expansion may actually contribute more noise to the query
and negate what little benefits keyword expansion may give [103]: if keywords cannot

3Protégé-2000 [124] was used in this example as explained in p. 59.
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have their meaning solved, then all synonyms of a particular keyword may be used in
the expansion, and this has the potential to retrieve many irrelevant documents.

Attempting to overcome the limited usefulness of keyword expansion by synonyms,
various researchers have tried to use slightly more sophisticated resources for query
expansion. These include dictionary-like resources such as lexical semantic relations
[153], keyword co-occurrence statistics [119, 102], as well as resources generated dynam-
ically through relevance feedback, like global document analysis [160], and collaborative
concept-based expansion [91] that also requires the use of relevance feedback [105].

Although some of these approaches are promising, they share some of the same prob-
lems as naive synonym expansion. Dictionary-like resources such as WordNet (appendix
C) and co-occurrence frequencies, although more sophisticated that just synonyms, still
operate mostly on the word-level and suggest expansions that are lexically motivated
rather than conceptually motivated. Relevance feedback, though somewhat more suc-
cessful than dictionary approaches, requires additional iterations of users and cannot be
considered a fully automated retrieval.

2.2 Field-Based Paradigm

The field-based approach (also called attribute-based and feature-based) describes and
retrieves an item by one or more field-value pairs. This way the field-based paradigm
can be seen as an extension to the text-based paradigm where only one field is used
in annotation and retrieval. Typically a metadata schema (ontology) is defined that
describes a set of fields and some indication is given about the type of values that can
be assigned to a particular field. The most widely used schema for describing on-line
documents in general is the Dublin Core metadata template [28]. The fields of DC version
1.1 are title, creator, subject, description, publisher, contributor, date, type,
format, identifier, source, language, relation, coverage, and rights. Qualified
versions of DC have been created for specialized domains such as for describing art
objects in museums [156].

2.2.1 Field-Based Annotation

The usual case is that the annotator has a number of fields where the required values can
be set. Some fields take text as value and some take values like integer, boolean, date, etc.
Some values might be more or less predefined. There might be a menu with a number
of color options associated to a field, and properties like length could be constrained into
the metric system. Many systems require giving proper values to certain fields before
accepting an annotation. Then again all fields do not have to be given values because
these might not be essential or there possibly does not exist values for all the fields with
all the annotated items.

As with the text-based paradigm, having an agreed thesaurus simplifies both the retrieval
and annotation processes. Many of the field-based initiatives recommend the use of
closed thesauruses such as the AAT (sect. 2.1.1) but do not associate particular parts
of a thesaurus with a field. As a consequence the only support that a human annotator
has is some sort of thesaurus browser or a reference book. To improve the support for
annotation a mapping is required from the fields to particular parts of the thesaurus so
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that the annotator is only presented with terms that are relevant for a particular field.
This would again be very close to more semantically oriented structure-based paradigm.

The example case is to annotate the same photo (fig. 3, p. 6) that was annotated with
the text-based paradigm. The annotator has the image, image text, and a set of empty
fields to start with. Some fields in the below table describe the implicit properties or the
image (topic, color), some describe the explicit properties (photographer, copyrights),
and some fields describe both (reference words, other information), just as explained in
section 1.1.

photographer date of photography topic reference words

negative size color annotator copyrights

other information image type image size condition

archival

Some fields might be hard to understand without any additional info. The Topic field
corresponds to the whole annotation of the text-based paradigm in figure 3, with the
exception of the photographing studio that could be inserted in field photographer or
other information. When all the required fields have been properly filled the annota-
tion is done.

2.2.2 Field-Based Retrieval

The retrievers usually do not have to give values to all the fields of the search interface
to find the wanted images and can be totally unaware of the system beforehand, when in
contrast the annotators are usually trained for the job. When the annotator sets a certain
value to a field like integer 1, the retrievers can possibly query a certain range of values
such as integers between [0 10], all dates between years 1500-2000, and character strings
just as with the text-based paradigm. Again, the use of an agreed vocabulary helps
to find the wanted images, and in contrast, using incorrect vocabulary might make the
search very hard. Fields with pre-defined value specifications are very helpful when the
vocabulary used in the annotation process in unknown. It would be very time-consuming
and unnecessary to always give values to all the possible fields if there are many of these.
One simple way of executing a field-based search is to first give values to only a few fields
and start the search. If the precision is too low the retriever can set more constraints by
giving values for a few more fields or giving more accurate values for some fields.

However, an average user who is not interested in the explicit properties of the image
uses mostly the topic field. In this case the retrieval is identical to text-based retrieval.
The only difference is the possibility to set values for a number of other fields, which
can have other kinds of value types. The planning of the fields is again very close to
ontology-based planning.
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2.3 Structure-Based Paradigm

Structure-based paradigm [155] can be seen as an extension to the field-based paradigm.
Where the field-based approach essentially uses a flat structure of attribute-value pairs,
the structure-based approach allows more complex descriptions involving relations. For
example, a description of a piece of furniture can include a description of it’s components,
e.g., a drawer of a chest. The components are again objects that can be described using
a number of attributes such as material, size, and shape. Components can even have
components themselves, e.g., drawers can have handles, and theoretically the specifica-
tion of the subcomponents can go up to the depth where a component can not have any
more specific subcomponents.

Ontology-based design is the only way to construct structure-based systems, and in
general structure-based systems can be called ontology-based systems. The methods
explained here are on very general level and ontologies (sect. 3) have to be understood
to thoroughly understand the structure-based paradigm.

2.3.1 Structure-Based Annotation

There is a vague line between what is called a field-based or a structure-based annotation
schema, but one fundamental difference to field-based paradigm is the method of selecting
the values for the fields. With field-based systems the values are most often natural
language nouns typed with the keyboard, but structure-based systems allow selecting
the values from within category trees like the one in figure 6. The category trees can be
built using formal ontology languages.

Categories can be equated with the traditional folders (or directories) of a personal
computer and the individual images that the categories describe can be equated with
the files that are stored in the folders of a PC. The traditional folder structures are only
more constrained than the categories: the folders can have many subfolders but only one
parent folder - categories can have many subcategories and many parent categories; the
same file can belong to one folder only - an individual can belong to many categories.

Let the subject of the example annotation be again the image on figure 3 in p. 6 and let
the fields be the same as with the field-based paradigm in sect. 2.2.1, with the exception
that the values of field topic are selected in a structured way. The annotator has the
image and the image text to work with. Based on this information the annotator has
to select values for the topic field from within the category tree on figure 6. The tree
contains three categories: Happenings, Persons, and Objects. In every category there
is a list of individuals in an alphabetical order: Happenings contains many individual
happenings, Persons contains many individual persons, and Objects contains many
individual objects.

Conference
Promotion
Wedding

Concert Eero Hyvönen
Hannu Erkiö
Hedvig Estlander
Ilkka Niiniluoto

Car
Garland
House
Sword

PersonsHappenings Objects

Figure 6: A category tree from which values are selected for the topic field.
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The annotator selects Promotion from category Happenings, Hedvig Estlander from cate-
gory Persons, and Garland from category Objects. In case the wanted individuals would
not be on the lists the annotator could add them there. If the annotator would not know
that the person was Hedvig Estlander, she/he could have annotated only the category
Persons to tell that there is some person in the image.

The example was very simple, but relational descriptions can vary widely between dif-
ferent categories of things and the annotation can be carried on in myriads of ways. It
is clear that annotation has to be handled in a way that different annotators can use
the same annotation interface at different times successfully not doing the same work
again, seeing what has already been annotated, and possibly supplementing the previ-
ously made annotations. With relatively small or simple schemas annotations can be
done very easily and swiftly but with complex schemas the process can get harder.

2.3.2 Structure-Based Retrieval

Values were selected from a category tree in the annotation. In the retrieval the same
tree is used in finding the images that are linked to certain categories or individuals.
Structure-based retrieval can be done in very many different ways just as the annotation.
Implementation of the retrieval system naturally depends on the way the annotations
are made but the most essential principles in the retrieval are set theoretic intersection
∩, union ∪, and difference \ 4.

The retrieval process can be carried on by first choosing a promising category from within
a set of top level categories and following a promising path from a category to another
until the wanted kind of category or individual is found. When x (category or individual)
is selected, the system retrieves all images that were linked to x in the annotation stage.
By selecting Hedvig Estlander from the category tree the system retrieves all images that
were linked to Hedvig Estlander in the annotation.

The intersection x1 ∩ x2 retrieves those, and only those images that are linked to both
x1 and x2. The union x1 ∪ x2 retrieves the images that are linked to x1 or to x2. The
difference x1\x2 retrieves the images that are linked to x1 but not to x2. The search
constraints can also be combined. The expression (x1 ∩ x2)\x3 retrieves images that are
linked to both x1 and x2, but not to x3.

Structure-based methods have been used for example with the HiBrowse system [123]
in the 90’s, and more recently with Flamenco [35], Promotor (sect. 4.3), and Muse-
umFinland [74] for example. In addition to these academic projects, structure-based
methods have been taken in use in an increasing pace also with every-day applications
because of their outstanding performance. For example INOA search [78], Open direc-
tory project (appendix D), and Soneraplaza topic search [139] all allow constraining the
search with categories. The ’structure’ in the structure-based paradigm can be equated
with ontological categories, and ontologies are examined in the next section.

4These principles are explained in more detail in sect. 3.1.5
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3 Ontologies

This section briefly introduces ontologies to the reader with the scope limited to cate-
gorization, i.e., in relating categories with each other in the same way as with formal
Semantic Web ontologies.

Theoretical basis of ontologies [142, 138, 34] are reviewed first in section 3.1 in order
to clarify the questions about meaning of categories and the basis of describing things
with categories. The classes of Semantic Web ontologies, as well as the categories of
philosophical ontologies (appendix C) are in a predecessor-successor hierarchy, which
facilitates using intersection, union, and difference to explain the logic in frame-based
categorization, and in structure-based annotation and retrieval in simple means.

Section 3.2 examines modern formal ontologies with the scope on the standard Semantic
Web ontology languages. Frame-based modeling [96] is currently the most common
design principle of Semantic Web ontologies and categorization is the backbone of frame-
based modeling. Ontology languages such as RDFS and OWL support frame-based
modeling, which is also used in the case example in section 4 in creating a domain
ontology.

3.1 Theory of Ontological Categories

The history of ontological categories is briefly discussed in section 3.1.1. Any rationally
constructed category tree follows a certain logic, that is deterministically explained in
section 3.1.2 by equating the categories with ZF-sets5. The theory is applied in practice
in section 3.1.3, where the Physical-Abstract and Continuant-Occurrent divisions are
explained with visual category tree representations in order to show the relativeness of
any categorization. In section 3.1.4, triads (Firstness, Secondness, Thirdness) are used
to explain the principle of how relations of categories are expressed with RDF, that is
the basis of formal Semantic Web ontology languages (sect. 3.2.2). Section 3.1.5 shows
how category trees can be used to annotate and retrieve information.

3.1.1 Historical Overview

Word ontology comes from the Greek words ontos (study of being) and logos (word). On
some occasions ontology is treated as a synonym for metaphysics, domain, or context
[137]. The word was used in Christian theology in scope of examining God’s metaphysical
appearance throughout the middle ages, and was taken in use also in philosophy in the
17th century [64, 104, 32, 47]. Philosophical ontology is the science of what is, of the
kinds of structures, categories of objects, properties, events, processes, and relations in
every area of reality. The taxonomies which result from philosophical ontology have been
intended to be definitive in the sense that they could serve as answers to questions such
as: ”What categories of entities are needed for a complete description and explanation
of all the going-ons in the universe?” In this sense a perfect ontology should cover all
types of entities, including also all the relations by which the entities are associated
with each other. A priori knowledge, being something we know or can reason about
without having to percept it again can be equated with ontology; ontology represents
our a priori knowledge. Even though the term was used in theology, philosophers like

5Zermelo-Fraenkel set theory is a generally accepted formalization of set theory.
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Plato, Heraclitus, and Aristotle examined the metaphysical structure of the world in the
ancient Greece long before the birth or Christianity.

3.1.2 Category Tree

The problem of Universals and Particulars can be seen as an important stage of early
ontology research. A universal can be defined as an abstract object or term that ranges
over particular things; roundness ranges over all things that are round like stars and
planets. Universals can be equated with ontological categories and particulars can be
equated with the things that the categories describe: the universe, and categories lower
in the hierarchy.

The division to universals and particulars is problematic in nature, and the line between
an universal and a particular depends on a viewpoint. From a human point of view, the
individual particulars are those things that a human would approximately consider as a
unique assemblance of physical and abstract things that is so unique that there cannot
be two absolutely identical of the same kind, or if there are, these too can be enumerated
and called individuals. The particulars are often concrete, like individual humans, stars,
and planets, but also all the categories can be called individuals. Every category and
every ontology is unique: if there are two ontologies that are not identical, then they
are individual, and if two ontologies are identical, then they are the same individual
ontology. And every category is unique, because there is no other category in it’s specific
place in some ontology, of which all are unique. All that can be said is that categories
that are higher in a hierarchy of an ontology are more universal than those lower in
the hierarchy, because those categories that are lower in the hierarchy describe a more
condensed view of reality than the ones above them. The line between universals and
particulars is drawn where it is the most practical to draw from the scope of an average
person.

The categories in figure 7 were specified already by Plato even though he used the
concept divided line [122] instead of a category tree representation. The terms used with
the category tree are introduced in the following with Plato’s categories.

Physical objectsImageFormHypothesisIdea

Abstract Physical 

Figure 7: Plato’s categories represent the universals.

• Universal type > and primitive ⊥
> is the root category that is always on the top of the tree. > contains all

differentiae and describes everything. The primitive or absurd type ⊥ is the only
leaf category of the tree. ⊥ contains only what is common to all categories, and
describes only what is common to all the things that all the categories in the tree
describe.
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• Subcategory

Having two categories connected with a line, the category that is geometrically
lower than the other is subcategory of the upper category. Subcategory of an arbi-
trary category X describes a more condensed view of the reality than X, relative to
what X describes. Abstract and Physical are subcategories of >. Idea, Hypothesis
and Form are subcategories of Abstract. Image and Physical objects are subcate-
gories of Physical. ⊥ is subcategory of Idea, Hypothesis, Form, Image, and Physical
objects.

• Supercategory

Supercategory is an inversion of subcategory. Having two categories connected with
a line, the category that is geometrically higher than the other is supercategory
of the lower category. Supercategory of an arbitrary category X describes a wider
view of the reality than X, relative to what X describes. > is supercategory of
Abstract and Physical. Abstract is supercategory of Idea, Hypothesis and Form.
Physical is supercategory of Image and Physical objects. Idea, Hypothesis, Form,
Image, and Physical objects are supercategories of ⊥.

• Successor

Successors of an arbitrary category X are all those categories that are confronted
by following the line downwards from a category to another, starting from X. All
successors of X describe a more condensed view of the reality than X, relative
to what X describes. All categories are successors of > except > itself. ⊥ is a
successor of every category except ⊥ itself, and no category is successor of ⊥.

• Predecessor

Predecessor is an inversion of successor. Predecessors of an arbitrary category X
are all those categories that are confronted by following the line upwards from a
category to another, starting from X. All predecessors of X describe a wider view of
the reality than X, relative to what X describes. > is predecessor of every category
except > itself, and no category is predecessor of >. Every category is predecessor
of ⊥, except ⊥ itself.

Category tree is a lattice6, but since drawing of the greatest node > and the smallest
node ⊥ is not enforced it can be called a tree as well. The relations of categories could
be described with predicate logic or with any other suitable formalism, but the simplest
category tree requires only the supercategoryOf relation and can be taken as a boolean
algebra [54] model M = {E, >}, where E stands for the categories and > stands for the
supercategoryOf connective between the categories7.

A category can have a totally different meaning when placed as a subcategory of different
categories. Especially the meaning of iconic signs (Appendix B) like Circle changes along
the supercategory: as a subcategory of Form, Circle would stand for an abstract circular
form, and as a subcategory of Physical objects it would stand for a physical object that
has a circular form. In addition to the category itself, relations to other categories
determine the meaning of a category. In case of model M, predecessors and successors
of an arbitrary category X determine the meaning of X. A category X describes its

6Lattice is simply a tree where there is always a path from every node (or category) to the greatest
node >, and to the smallest node ⊥.

7Using model M, Abstract > Form means that Abstract is supercategory of Form. The notation is
useful whenever describing category hierarchies within text.
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successors, but the successors also describe category X; predecessors of X describe X,
but X also determines the meaning of it’s predecessors.

In terms of ZF set theory, the categories can be equated with sets, where subcategories
are proper subsets of their supercategories8. The set theoretic relations of categories are
visualized with figure 8. The categories of the second and the third tree from the left
are in correspondence with the first tree from the left: in the second tree A = {1, 2} and
B = {2, 3}; in the third tree A = {1, 2, 3} and B = {2, 3, 4, 5}.

BA

C D E {2}{1}

{2,3}

{1,2,3}

{1,2}

{3}

{}

{1,2,3,4,5,6}

{1,2,3} {2,3,4,5}

{1} {2} {4}

{}

{1,2,3,4}

{1,2,3}

{1,2}

{1}

{1,2,3,4}

{1,2} {3,4}

{}

{1} {3}

Figure 8: Examples of category trees where the categories are depicted as ZF sets.

When an arbitrary category X has two or more subcategories, the union of these is a
subset of X. A and B are proper subsets of >: A ⊂ >, B ⊂ >. The union of A and B

is a subset of >: A ∪ B ⊆ >. It is important to understand that A ∪ B = > does not
have to hold because A ∪ B can be also a proper subset of >: in the second tree from
the left A ∪ B = >, C ∪ D = A, D ∪ E = B, and C ∪ D ∪ E = >, but in the third tree
from the left A∪B ⊂ >, C ∪D ⊂ A, D∪E ⊂ B, and C ∪D∪E ⊂ >, i.e., all categories
contain more than the unions of their subcategories contain.

When X has two or more supercategories, X is a subset of the intersection of these.
D is a subset of the intersection of A and B: D ⊆ A ∩ B, i.e., D can contain all that
is common to A and B or only a proper part of it. In the second tree from the left
D = A ∩ B, but in the third tree from the left D ⊂ A ∩ B.

In the second tree from the right the category that corresponds to ⊥ is not empty. A
strict definition is applied in the rightmost tree, where all subcategories of X are disjoint,
i.e., an intersection of two or more successors of X that are not in predecessor-successor
relation is empty: when X has two subcategories x1 and x2, x1 ⊆ X\x2, and x2 ⊆ X\x1,
which implicates that x1 ∩ x2 = {}.

The set theoretic definition enables understanding the boundaries of ontologies. A perfect
philosophical ontology should have the means to describe everything that exists, but the
limit of the descriptive power of any ontology is that an ontology cannot be thoroughly
described with itself. This limitation can be derived directly from Russell’s Paradox
[110], formulated by Bertrand Russell (1903). All categories can be equated with sets,
and all categories of an ontology are proper subsets of >, except > itself. When an
ontology describes itself, > should be a proper subset of >, which is impossible. The
conclusion is that an ontology can only describe things external to the present state of
itself.

8When inner sets are not allowed, all members of the sets are ∈-minimal and cannot be further
divided. This way, also all successors of an arbitrary category X have to be proper subsets of X. When
the cardinality of > is c, the maximum depth of the tree is c, and the maximum amount of different
categories is 2c.
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3.1.3 Contrasts in Categorization

The reality is relative and so is the ontology that describes it: categories classify things
relative to other categories. All categories are in contrast and describe different types
of properties of things. Two dichotomies of top-level categories are examined in the
following to clarify the use of the set theoretic definition in practice.

Dichotomy of Physical and Abstract

Successors of Abstract describe abstract properties of things, and successors of Physical
describe physical properties of things in figure 9. For example, the abstract form of an
iron ball is Round and it is made of physical Metal. A frisbee is also Round, but it is
made of Plastic instead of Metal.

Abstract Physical

HypothesisIdea Form

PlasticMetal

Matter Radiation

Quarks and GluonsElectron

Strings

String B

NeutronProton

String A

C (coal atom)

Elementary Particles

Fe (iron atom)

AngulatedRound

Figure 9: Plato’s categories of figure 7 in p. 14 are modified and the categorization is
not intended to be definitive. Most of the successors of Abstract are depicted as leaves
of the tree because of representational reasons, but ⊥ is still a successor of all of these.

The strict definition is applied in the division to Physical and Abstract: when a category
is successor of Abstract, it can not be successor of Physical9. Things that are generally
considered concrete, touchable, visible, or measurable such as Matter and Radiation are
described with successors of Physical. Abstract things like information structures in living
beings’ minds or in the memory of a computer are opposite to Physical things. These
kinds of things are untouchable, invisible, that possibly cannot be explained such as
Form and Idea. Many of the other categorizations are not disjoint, such as the division
of Matter to Metal and Plastic.

When an arbitrary category X has one or more subcategories, then X is something where
all of these belong to: Physical and Abstract belong to >, Matter and Radiation belong
to Physical, and Metal and Plastic belong to Matter. X can contain more than it’s

9Unless the categories and the individuals are equated.
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subcategories, but X can also constitute of it’s subcategories only. > contains more than
just Physical and Abstract, Matter contains more than Metal and Plastic, but Elementary
Particles constitutes exactly of Electron, Proton, and Neutron.

When X has one or more supercategories, then X is something that belongs to all of
these: Elementary particles belongs to both Fe (iron atom) and C (coal atom) because
they both constitute of the same Elementary Particles. Proton and Neutron then again
constitute of Quarks and Gluons. String-theory discusses how Electrons and Quarks and
Gluons constitute of Strings.

The intersection of String A and String B is marked with the unknown ⊥ because it is
not known what is common to two different strings. ⊥ is what is common to all of the
categories in the tree, that is intuitively nothing.

Dichotomy of Continuant and Occurrent

In addition to Physical and Abstract, also other categories can be applied as high in the
hierarchy. The division to Continuant and Occurrent classifies the continuity of things
relative to each other in figure 10.

All matter tends to change within a period of time, including the planets, galaxies, and
the whole known universe. A continuant has a stable set of properties that describe its
various appearances at different times to be recognized as the same thing. The most
continuant things are placed as subcategories of Continuant and the least continuant
things as subcategories of Occurrent. Relative to being a Continuant, Planet is subcate-

Universe Mountain

Planet Planet

Mountain Universe

Continuant                Occurrent

Figure 10: Division to Continuant and Occurrent.

gory of Universe and Mountain is subcategory of Planet. The bottom-most successors of
Continuant (before ⊥) in the tree describe things that remain recognizable as the same
thing for the shortest period of time.

Relative to being an Occurrent, Planet is subcategory of Mountain and Universe is
subcategory of Planet. The bottom-most successors of Occurrent would then describe
the entities that remain recognizable as the same thing for the longest period of time.

When two things are as continuant or occurrent they can be placed as subcategories of
the same category. The intersection of successors of Continuant and Occurrent is marked
with ⊥. In this case ’absurd type’ describes ⊥ quite well because it is hard to imagine
what is common to successors of both Continuant and Occurrent.
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3.1.4 The Principle of Triads

The idea of triads (Firstness I, Secondness II, and Thirdness III) was born when modern
philosophers10 were creating triadic category patterns as means to create new categories
from the previously created ones. I, II, and III have been also included in a philosophical
ontology as categories11, but here the principle is used in explaining the relations of
categories.

According to Peirce (1891) ”First is the conception of being or existing independent of
anything else. Second is the conception of being relative to, the conception of reaction
with something else. Third is the conception of mediation, whereby the first and the
second are brought into relation.”

The triadic pattern is widely applicable in explaining relations of things, and is used
in fields such as philosophy, art, semiotics, and cognitive science to describe thinking,
formation of perception, and interpreting art. The principle can be used also in explain-
ing the meaning of a category when its supercategory is known. I can be taken as a
holistic punctum (appendix B): a category that comes first in mind and appears to be
independent. II is the domain, context, or supercategory that surrounds I, and III is the
meaning of I in the context of II. For example, when I is Form and II is Abstract, then
III is the meaning of Form in context of Abstract, that is an abstract form. When I is
Form and II is Application, III would be totally different: an application form.

Next the triadic pattern is used in categorization with a naive example. Categories
Earth, Mars, and Pluto are subcategories of > in the tree on the left of figure 11. Earth

MarsEarth Pluto Pluto

Mars

Planets

Mars PlutoEarth Earth

Planets

Figure 11: Example of categorization with the principle of triads.

and Mars are selected as I and II. They both are Planets (III), and the result is seen
on the center. Also other category pairs, Earth-Pluto and Mars-Pluto could have been
selected as well as Earth-Mars. The final step is to select pair Pluto-Earth or Pluto-Mars
as I and II, which both are Planets (III), and so, also Pluto can be set as a subcategory
of Planets.

Placing the new categories as high in the hierarchy as possible is in theory sufficient to
create any categorization because any categorization can be done one triad at a time.
In addition of creating new categories out of the existing ones the principle of triads
can be used in reducing the number of categories. Two similar categories (I and II) can
be combined into one (III), when the new category collects successors of I and II, and
therefore I and II can be discarded from the tree. When only one category X is discarded,
X’s supercategories collect the successors of X. If category P lanets was discarded from
the tree on the right of figure 11, the result would be the tree on the left of figure 11.

10Kant, Peirce, Husserl, Whitehead, Heidegger, and others.
11Sowa’s Diamond in appendix C.
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Has-test [142] can be used when it is difficult to decide whether a category suits as a
subcategory of another category by inserting ’X has Y’. If the pattern sounds normal,
then Y can be placed as a subcategory of X. ’Has’ can be replaced with many words and
nouns such as ’has greater expressive power than’ or ’suits for describing a wider area
of reality than’. When X and Y change places, other kinds of versions of the test can
be used like ’Y is part of X’, or ’Y belongs to X’. For example, ’Metal fits for describing
wider area of reality than Iron’ and ’Iron is part of Metal’ sound natural, and so category
Iron can be placed as a subcategory of Metal rather than the other way round. In some
cases it is intentional to use the test in both directions, like ’Y is X’ and ’X is Y’. ’Iron
is Metal’ sounds reasonable, but ’Metal is Iron’ does not.

The principle of triads is applied also in the very basis of the Semantic Web. In RDF
(sect. 3.2.2) information is expressed in form of triads, or triples: Subject-Object-
Predicate, or Subject-Property-Value. On the left side of figure 12 is a category
tree and on the right side is a table with three triples that are in correspondence with
the tree. Naturally, also other kinds of properties can be expressed with triples, but
the supercategoryOf relation ’¿’ is used as an example. The triple (Abstract, >, Form)

Property ValueSubject
Abstract

Abstract

Abstract

>

>

>

Idea

Hypothesis

Form

HypothesisIdea Form

Abstract

Figure 12: A category tree and the corresponding triples.

tells that Abstract is supercategory of Form. Any member of the triple can be queried
when two out of three members are known. The known members can be taken as I
and II, when III is the result of the query. The query (Abstract, >, III) returns Idea,
Form, and Hypothesis, i.e., all values that Abstract has for property >. The queries
(Abstract, III, Idea), (Abstract, III, Form), and (Abstract, III, Hypothesis) all return
>, i.e., the property of Abstract that has values Idea, Form, and Hypothesis. The
queries (III, >, Idea), (III, >, Form), and (III, >, Hypothesis) all return Abstract,
i.e., the subject that has values Idea, Form, and Hypothesis for property >. Two
or more triples can be unified, which allows more complex queries.

3.1.5 Annotation and Retrieval

The fundamental principles of structure-based annotation and retrieval [134] can be
explained with category tree using the set theoretical notation. The task is to annotate
six items, or instances, denoted by members of the annotation set {1, 2, 3, 4, 5, 6} with the
given category tree on the left side of figure 13. The annotation is done by linking subsets
of the annotation set to the categories. Let the triple, or query (Y, annotationOf, III)
return the annotations of category Y . The result of the query (III) is abbreviated as Ya

in the following. On the left side of figure 13 is the category tree without annotations
and for example Aa = {} and Ha = {}12.

12Note that the sets depict only the values of annotationOf properties in this example and not the
categories that remain the same.
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BA

C D E

G H IF

{2}

{3} {4} {5} {6}

{}

{}

{1}

{} {}

{3} {4} {5} {6}

{4,5}{3} {5,6}

{1,3,4,5} {2,4,5,6}

{1,2,3,4,5,6}

Figure 13: Sets represent annotations of categories A, B, C, D, E, F, G, H,I.

The annotation is executed and the result can be seen in the tree on the center. For
example, Aa = {1} and Fa = {3}, but >a = {} and Da = {}. The retrieval is only a
matter of how the annotations are used, i.e., rules for retrieval have to be defined. Let
the rule be: ”annotations of subcategories of an arbitrary category X are unified with the
annotations of X.” Hereby, predecessors inherit the annotations of all their successors.
This rule is based on the fact that predecessors describe what is common to all of their
successors: all things that are described with successors of Roundness are also round. In
the tree on the right the annotations have been inherited all the way up to the top. For
example, union of Ga and Ha constitutes Da: Ga ∪ Ha = {4} ∪ {5} = {4, 5} = Da. The
rules concerning the sets that depict the annotations of the rightmost tree are the same
as with the set theoretical definition of the category tree with one exception: annotation
of subcategory of X does not have to be a proper subset of Xa, but can also be the same
as Xa. For example, F ⊂ C but Fa = {3} ⊆ {3} = Ca. Examples of retrieval are given
in the following.

• Intersection of two of more annotations retrieves those, and only those images
that are members of all participants of the intersection. When intersection of Aa

and Ba is selected, items 4 and 5 are retrieved: Aa∩Ba = {1, 3, 4, 5}∩{2, 4, 5, 6} =
{4, 5}.

• Union of two or more annotations retrieves all those images that are members of
any of the participants of the union. When union of Aa and Ba is selected, items
1,2,3,4,5, and 6 are retrieved: Aa ∪ Ba = {1, 3, 4, 5} ∪ {2, 4, 5, 6} = {1, 2, 3, 4, 5, 6}.

• Difference. Selecting difference of one annotation retrieves all images except
those that are members of the selected annotation. Difference of two annotations
retrieves the images that are members of one but not of the other annotation.
When difference of Aa and Ba is selected, items 1 and 3 are retrieved: Aa\Ba =
{1, 3, 4, 5}\{2, 4, 5, 6} = {1, 3}.

• Combinations of intersection, union, and difference can be used. When the union
of Ca and Ea is selected, and the difference of this union and Da is calculated, items
3 and 6 are retrieved: (Ca ∪ Ea)\Da = ({3} ∪ {5, 6})\{4, 5} = {3, 5, 6}\{4, 5} =
{3, 6}.

3.1.6 Conclusions

All ontologies describe and relate entities in different ways, but still the boundaries of
the description power of any ontology remains the same. No matter what kind of formal
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language is used in constructing an ontology or creating queries, the triadic pattern of
Firstness, Secondness, and Thirdness can be used to explain it.

Category tree is a very clear model for depicting the top-most distinctions of ontologies.
The principle of category tree can be intuitively understood by humans, which is why
ontologists have used it for centuries (Appendix C), and an increasing amount of people
are using the principle all around the world in building frame-based ontologies, and in
retrieving information from the Semantic Web.

3.2 Formal Ontologies

Today’s modern formal ontologies that are used in computer science are examined in
this section. Section 3.2.1 discusses different sorts of formal ontologies and frameworks
and section 3.2.2 examines in detail the standard Semantic Web ontology languages that
will be used in the case example in section 4.

Ontologies were taken in use in computer science to facilitate knowledge sharing and
reuse. Since the beginning of the nineties, ontologies have become more and more popu-
lar research topic investigated by several AI research communities including knowledge
engineering, natural-language processing, and knowledge representation. More recently,
the notion of ontology is also becoming widespread in fields such as intelligent information
integration, cooperative information systems, information retrieval, electronic commerce,
and knowledge management. The reason ontologies are so popular is in large part due
to what they promise and give: a shared and common understanding of a domain that
can be communicated between people and application systems [40].

Maybe the most popular definition of modern formal ontology is given in [63]: An ontol-
ogy is a formal, explicit specification of a shared conceptualization. A conceptualization
of some phenomenon in the world identifies and determines the relevant concepts and
the relations of that phenomenon. Explicit means that the type of the used concepts and
constraints are explicitly defined, i.e., they suit for describing also other phenomenons of
the same kind and are not constrained to some single ’real’ phenomenon. Formal refers
to the fact that the ontology should be machine readable. Hereby different degrees of
formality are possible. The meaning of ’machine readable’ cannot be clearly specified,
but a formal ontology has to be stored in a digital format. Shared reflects the notion
that the ontology is not restricted to some individual, but accepted by a larger group.
At the best, the group can include all the people and programs in the world.

Basically, the role of ontologies in knowledge engineering and in software engineering is
to facilitate the construction of a domain model. An ontology provides a vocabulary
or terms and relations with which to model the domain. Because ontologies aim at
consensual domain knowledge their development is often a cooperative process involving
different people possibly at different locations. People who agree to accept an ontology
are said to commit themselves to that ontology.
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3.2.1 Ontology Types and Frameworks

Depending on their generality level different types of ontologies may be identified that
fulfill different roles in the process of building a knowledge-based system [58, 67]. In
practice, any information structure can be called ’an ontology’: the table of contents
or introduction of this thesis, a back cover text of a book and object oriented or other
kinds of databases can all be taken as ontologies, metadata, or category tree structures.
There is not a widely accepted classification of ontology types, but some ontology types
can be distinguished among others. The following classification is an example of an
ontology itself: ontology of ontology types where one ontology can belong to more than
one category13:

• Representational ontologies and ontology frameworks provide representa-
tional primitives without committing to any particular domain. These kind of
ontologies do not express the exact purpose of the primitives, but only offer a
framework that enables the usage of the provided representational primitives. Well-
known representational ontologies are for example the Frame Ontology [63], and
Resource Description Framework Schema (sect. 3.2.2). Class structures are the
most common examples of representational ontologies. Every person who uses a
computer stores information in a class or folder structure. Also set theory, predicate
logic, and numerous other mathematical formalism can be taken as representational
ontologies.

• Top level, upper, generic, general, core, and common-sense ontologies

aim at capturing human common-sense knowledge about everyday life, providing
basic notions about concepts like time, space, state, event, etc. [142, 51]. As a
consequence, they are valid across several domains and provide a basic, domain
independent vocabulary and object specifications to be used as the basis of other,
more domain specific ontologies. Standard Upper Ontology [145] work group of
IEEE has been specifying a standard top level ontology since 2001. The objective of
the working group is to assist the development of ontologies and advance knowledge
engineering in general by providing a common ground for more specific domain
ontologies [113].

• Metadata ontologies like Dublin Core [154, 28] provide a vocabulary or cate-
gories for describing the contents of on-line information resources in the Web.

• Domain ontologies describe a reusable vocabulary of a given domain. Top level
ontologies may be used as the foundation of a domain-specific ontology. Domain
ontologies can describe domains around happenings such as surgery, ice-hockey,
wedding, promotion (sect. 4.1), etc.

• Application, Method and task-specific ontologies Application ontologies
specify the vocabulary required to model a certain application, and provide the
base-structure of an application [18]. Application ontologies and domain ontolo-
gies can be very similar in nature. Task-specific ontologies provide vocabulary and
knowledge used to solve problems associated to a certain task. Method ontologies
provide the terms and knowledge to particular problem solving methods (PSMs).
Domain-task ontologies are task-specific ontologies where the intended problem
solving covers problems only in a given domain area [41, 140].

13This classification is based on [40] and on the sources that appear in the classification.
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Part of the research on ontologies is concerned with envisioning and building technology
that enables a large-scale reuse of ontologies at a world-wide level [121]. In order to enable
as much reuse as possible, ontologies should be modular, and the modules should have a
high internal coherence. This requirement among others is expressed in design principles
for ontologies [62, 57, 150]. Assuming that the world is full of well-designed modular
ontologies, constructing a new ontology is a matter of assembling it from the existing
ones. For example, the Scalable Knowledge Composition project [82] aims at developing
an algebra for systematically composing ontologies from already existing ones. It offers
union, intersection, and difference as the basic operations. However, combining two
ontologies is not so easily done as it may sound. There would be many problems and
questions in creating a union even with two ontologies written in the same language.
There are so many different languages and intended usages of ontologies that there is a
long way to go before the information in many different kinds of ontologies can be used
efficiently, and includes conversion between languages.

Ontolingua [38, 115] server provides different kinds of operations for combining ontolo-
gies: inclusion, restriction, and polymorphic refinement. Inclusion of one ontology with
another has the effect that the composed ontology consists of the union of the two on-
tologies (their classes, relations, axioms).

The SENSUS system [147] provides a means for constructing a domain specific ontology
from given common sense ontologies. The basic idea is to use so-called seed elements,
which represent the most important domain concepts for identifying the relevant parts
of a top-level ontology. The selected parts are then used as starting points for extending
the ontology with further domain specific concepts.

Knowledge Interchange Format KIF [87, 88, 53] is a language designed for use in the in-
terchange of knowledge among disparate computer systems, possibly created by different
programmers at different times in different languages, and so forth.

The Foundation for Intelligent Physical Agents FIPA [42] has defined ontologies to facili-
tate communication of agents: common norms are needed to enable a reliable commercial
activity for example.

Three of today’s largest formal ontologies are briefly discussed in appendix C, and the
standard Semantic Web ontology languages are discussed next.

3.2.2 Semantic Web Standards

All standard languages explained in the proceeding are formal recommendations of the
World Wide Web Consortium W3C [158]. XML-based languages [20, 8] play a major
role in describing on-line information on the Internet. Resource Description Framework
RDF [95, 127, 128], an application of XML, is a general framework for describing any
resources reachable through the Internet. An RDF description can include the authors
of the resource, date of creation or updating, the organization of the pages on a site,
information that describes content in terms of audience or content rating, key words
for search engine data collection, subject categories, and so forth. RDF enables sharing
information on Web sites and helps software developers to build products that can use the
RDF-descriptions to provide better search engines and directories, to act as intelligent
agents, and to give Web users more control of what they are viewing. As explained
in section 3.1.4, the principle of triads is applied in the very basis of RDF. In RDF
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information is expressed in form of triples: Subject-Property-Value, of which all can
be URI’s.14

Subject: http://www.example.org/foo.html

Property: http://purl.org/dc/elements/1.1/creator

Value: http://www.example.org/staffid/85740

Subject is a Web page that has values for a set of one or more proper-
ties, of which Property creator15 is under scope. The Value of creator is
http://www.example.org/staffid/85740. It is not important what the triples are
called, but as with Firstness, Secondness, and Thirdness, Value is the intersection of
Subject and Property. Property creator is one aspect of Subject, and Value is
what is common to both Subject and Property. Also other query languages can be
explained with triads: with SQL the clause select X from Y selects all values of X with
the given Y16.

The simplest Frame-based Semantic Web ontology language is RDF Schema [21, 69].
RDFS is used to construct the promotion-ontology in section 4.1 and is therefore exam-
ined more thoroughly than other languages. The table below clarifies concepts used with
object-oriented programming languages and frame-based ontology languages.

Programming languages Ontology languages

software development ontologization
programmer ontologist
class class, category, frame
variable property, attribute, slot, field
object instance, individual
value of variable value of property, attribute, slot, field
type of variable range or facet of property, attribute, slot, field
class that contains the variable domain of property, attribute, slot, field

The generic concepts of the RDFS vocabulary are called classes. Classes are organized
into conceptual hierarchies, just as explained in section 3.1. For example, class Place

represents the generic category of classes Building, Park, and Forest. Building is a
superclass of classes Apartment building and Train station.

Classes may have properties. Successors inherit properties of their predecessors, and if
Building has an architect, also Apartment building has an architect. Apartment

building can naturally have extra properties in addition to the inherited ones. Properties
have constraints that state what kind of values can a certain property have. Such features
are sometimes called ’facets’. Also instances can be created. Each instance belongs to
one or more classes and can have values for all the properties defined for its classes, but
the values can also be left unspecified.

14URI=Uniform Resource Identifier. The generic set of all names/addresses that refer to resources.
URL, Uniform Resource Locator is a subset of URI, an informal term associated with popular URI
schemes: http, ftp, mailto, etc. URI’s cannot contain empty spaces among other restrictions [149].

15creator is used as an abbreviation of http://purl.org/dc/elements/1.1/creator
16An RDF triple is logically equivalent to an SQL [61] table that has for example one row and two

columns. However, RDF is a more flexible basis for Web ontology languages because there is no need for
explicit tables or public and foreign key specifications et cetera, and it is easier to share RDF databases
in the Web as plain text files because every RDF statement is a individual, which has URI pointers to
other statements.
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Figure 14 depicts an RDF Schema that corresponds to > > Place > Building >

Finlandia-House. The RDF statements in the figure are examined in more detail in

<rdfs:Class rdf:about="&Example;Place"
          rdfs:comment="Any physical place"
          rdfs:label="Place"

</rdfs:Class>
        <rdfs:subClassOf rfd:resource="&rdfs;Resource"/>

</rdfs:Class>

<rdfs:Class rdf:about="&Example;Building"
          rdfs:comment="Any building"
          rdfs:label="Building"
        <rdfs:subClassOf rfd:resource="&Example;Place"/>

</rdfs:Class>

<rdf:Property rdf:about="&Example;name"
          rdfs:label="name"

        <rdfs:range rfd:resource="&rdfs;Literal"/>
        <rdfs:domain rfd:resource="&Example;Place"/>

<Example:Building rdf:about="&Example;Example_01"
                 Example:name="Finlandia−House"
                 rdfs:label="Finlandia−House"/>

Figure 14: A visualization of RDFS Class-Property-Instance relationship, where the
arrow points to the resource that is referenced by the source of the arrow.

the following. Character strings that start with ’&’ are abbreviations (or macros) of
accurate namespace URIs that are situated in the beginning of the files that contain the
statements. RDF statements follow the XML syntax [127]:

<rdfs:Class rdf:about="&Example;Place"

rdfs:comment="Any physical place"

rdfs:label="Place">

<rdfs:subClassOf rdf:resource="&rdfs;Resource"/>

</rdfs:Class>

rdfs:Class indicates that this is a class-description, i.e., the type of this resource is
rdfs:Class. rdf:about="&Example;Place" indicates that &Example is the URI of
the RDF Schema where the class is defined, and the exact identifier of this class is
&Example;Place. As stated earlier, &Example is an abbreviation, when the full URI
could be something like http://www.MySchemas.com/Example. rdfs:comment="Any

physical place" is used to provide a human-readable description of a resource.
rdfs:label="Place" is used to provide a human-readable version of a resource name and
indicates that character String Place is the rdfs:label of this class. rdfs:subClassOf
rdf:resource="&rdfs;Resource" indicates that this class is a subclass of Resource,
the highest abstraction level of RDFS that corresponds the universal type >. Top level
class Place has a subclass:

<rdfs:Class rdf:about="&Example;Building"

rdfs:comment="Any building"

rdfs:label="Building">

<rdfs:subClassOf rdf:resource="&Example;Place"/>

</rdfs:Class>

rdfs:subClassOf rdf:resource= "&Example;Place indicates that class Building is
a subclass of class Place, and Building inherits all the properties of class Place.
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Properties are defined in a similar fashion than classes:

<rdf:Property rdf:about="&Example;name"

rdfs:label="name">

<rdfs:domain rdf:resource="&Example;Place"/>

<rdfs:range rdf:resource="&rdfs;Literal"/>

</rdf:Property>

rdf:Property states that this is a property specification, rdf:about= "&Example;name"

gives an ID to the property, and name is the rdfs:label of the property. rdfs:domain
rdf:resource= "&Example;Place" states that class Place and all of its successors have
property name. rdfs:range rdf:resource= "&rdfs;Literal" states that the value-
type of this property is Literal, i.e., a character String. Properties can also exist
without belonging to any class, when the property has no domain specifications. Also
sub-properties can be created with RDFS, which are used to specify that one property
is a specialization of another. Instances can have values for the the properties specified
for their parent classes, or inherited from the parent classes’ predecessors:

<Example:Building rdf:about="&Example;Example_01"

Example:name="Finlandia-House"

rdfs:label="Finlandia-House"/>

Example:Building states that the type of this instance is class Building, and
the name of the RDF Schema where the class specification can be found is
Example. rdf:about="&Example;Example 01" is the unique identifier of this instance.
Example:name="Finlandia-House" states that the value of this instance’s property name

is ”Finlandia-House”. rdfs:label="Finlandia-House" again gives a human-readable
label for this instance.

Like with RDF, also RDFS is used by creating queries in triple-form, just as explained is
section 3.1.4. The goal in the below example is to retrieve a list of URI’s of all subclasses
of > of the schema in figure 14. In RDQL the queries are represented in form subject,
object, and predicate17:

SELECT ?x

where (?x,rdfs:subClassOf,rdfs:Resource)

The result x is the ID of class Place: &Example;Place.

17Abbreviations are used. RDQL tutorials are available [130].
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RDFS provides simple modeling primitives that can be used in constructing very simple
ontologies but more specific ontologies should be created with other languages. There
have been several efforts to create languages that accommodate description logics and
have clear rules for semantics in using frame-based modeling primitives. Most recent of
them are Web Ontology Language OWL [117, 107] and Semantic Web Rule Language
SWRL [148] that can handle multiple range, cardinality and other specifications of prop-
erties, total or partial equivalence and disjointness of classes (property inheritance), and
handling different sorts of sequences and collections. OIL [114] and DAML [33] can be
taken as forerunners of OWL and SWRL.

As these new languages evolve, RDFS might be totally forgotten as it is now since new
languages with greater descriptive power can be used to create also simple ontologies.
It is possible to automatically modify an RDFS ontology into a more complex one, but
doing the process vice versa includes a high degree of specification of additional rules,
for example in expressing sequences, and the process would be very impractical.

RDFS has a model theory [128, 95], but the semantics of RDFS or any other ontology
language that should have domain-independent means to describe things will always
remain more of less unspecified. The semantics tells how the language should be used,
and specification of the semantics is essential to any language paradigm because clear
semantics highly facilitates the creation of homogeneous ontologies that can be efficiently
understood and reused across domain boundaries.

There are no clear rules about how classes, instances, and properties of RDFS should
be used. Instances can have sub-instances as well as classes can have subclasses, and so
category structures could be created by using only classes or only instances, or even only
properties that can be defined for both classes and instances. Also instances, classes,
and even properties themselves can be values of properties.

Ontology languages are incomplete means to explain relations of things, and irrational
statements can be declared that follow the syntax and semantics of a language. According
to Gödel’s first incompleteness theorem (1931) [144], within any mathematical language
that can be applied to natural numbers, or with which can we can perform operations on
natural numbers, are statements that cannot be proven to be either true or false. This
indicates that there is no sense in trying to create a ’perfect’ ontology language because
there cannot be one. The semantics of ontology languages will always be more or less
unclear because it is impossible to define deterministic guidelines about how to describe
all things in general.

Whatever means are chosen to create ontologies, it is always good to remember not to
possess plurality without necessity, and to keep the systems open for possible future
needs. Ontologies created with XML and RDF-based languages are surely easier to keep
open than others since the syntax is commonly agreed and there is a growing quantity of
parsers, editors, and other tools that can handle these. RDF is a very flexible and a good
basis for ontology languages because all types of entities can be represented and queried
in a similar fashion, which is not the case with traditional database query languages like
SQL. The prevalence of frame-based ontology editors and their popularity among users
suggests that the frame-based paradigm will prevail in the field of ontology development.
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4 Case Study on Ontologization, Annotation, and

Retrieval

This section goes through creating and using a formal ontology in practice. The section is
balanced between an individual case example and the general side of the topic, i.e., there
are theoretical parts and case-dependent parts within the text. Other projects of the same
nature have been executed and the results have been promising [134, 155, 99, 35, 123, 73].

The process of creating a domain ontology is examined first in section 4.1. The created
ontology is used in annotating images in section 4.2, and in section 4.3 the ontology and
the annotations are used with an image exhibition software. The English terms used
with the ontology and with the exhibition’s user interface are translated from Finnish.

4.1 Ontologization

Occam’s Razor, the most important guideline of ontologization has been
named after William of Ockham (c. 1285-1349), and gets easily forgotten
during the ontologization process: ”Plurality should not be posited without
necessity”. The ontologist should not use more concepts than are needed for
the cause of the ontologization effort. The amount or possible relations and
confusions rises exponentially along the amount of used concepts, just as in
real life: person X can check a friend’s phone number from a telephone cata-
log, ask it from the operator, check it from the memory of a mobile telephone,
Email a friend to ask it, who could again call another friend who could again
call X to ask it.

The case is to ontologize a traditional happening of Helsinki University called Promo-
tion. Promotion stands for the process where graduated masters, doctors, and other
promovends are promoted to their titles. There have been promotions since year 1643
in Finland. The tradition of Finnish promotions was copied from Uppsala University
in Sweden where it came from France dating back to 13th century. Today about all of
the Finnish universities that have promotions use more or less the same procedures as
in Turku almost 400 years ago. Different schools all around the world have the same
kinds of traditions with their graduation ceremonies: the promotor admits a hat and a
diploma to the graduated students.

4.1.1 Requirement Analysis

Ontology development has similar characteristics to software development in general18.
After an overall project plan a software development project usually proceeds to require-
ment analysis. Requirement analysis should specify all that the client requires from the
final software product, and in many cases only those strict requirements. The require-
ments of the client are defined without taking a stand to the software or ontology itself.
The requirements specify what should be done, and the design specifies how it is done
[65]. In ontology creation, and as usually, this stage of the process is especially impor-
tant. Domain ontologies expand very easily out of the domain borders, which in the end

18The terms used with traditional programming languages and frame-based ontology languages were
described in the graph in p. 61.
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leads to unnecessary and time-consuming ontologization of the world. By staying within
borders of the requirement analysis the ontologist can concentrate on the essential prob-
lems and not consume time on thinking about what should be included in or excluded
from the ontology.

In this case the client requirements were vague: ”construct a digital photograph exhi-
bition software about the promotion happening with a set of 600 photos.” The main
factors that guided the ontologization were 1) the end users’ common-sense requirements,
2) requirements of the client, 3) requirements of the application programmers, and 4)
common-sense and experience of the ontologist and domain experts. The ontologist can
be seen as a medium who constructs the ontology objectively according to requirements
of the other participants. In reality the change of ontologist affects the ontology. There
is not one and only right solution to most of the problems in ontologization process and
there is always a pay-off in choosing the ’less bad’ choice. Every person has a slightly
different model of reality and a joint ontologization process is an extreme example of a
situation where opinions of people can collide. When there is a problem about an opinion
with two of the participants it is useful again to remember the requirements and needs of
the other participants to solve the problem with a mature debate. A good ontologist has
knowledge of modern tools and principles and can take into account the requirements of
other participants without problems.

The ontology’s life cycle specification is also important. If it is sure that the ontology
will be used with different systems for a long period of time, then the documentation
about the ontology’s structure should be very exhaustive. With very simple ontologies
that are used only once the documentation might not be needed at all. In this case the
ontology’s structure changed so often that a literal documentation was decided to be just
adequate for the programmers to use.

As a data storage an ontology contains structured information. The structure itself can
be formed in many ways and there is a fuzzy line between needful and unnecessary
paths of finding information even though the information would remain identical. In
some cases even the existence of one very long possible path is dangerous and can cause
problems in application programming, as usually with cyclic nets. So, the overall goal in
ontologization, disregarding the domain, is to construct an information structure with
only the necessary information in a compact form where all user groups can find every
bit of information as quickly and as easily as possible. In this case the ontology should
be able to describe all photos about promotion ceremonies taken place in the past or
in the future, and contain information about the history and the present state of the
ceremonies.

4.1.2 Languages and Tools

RDF Schema (sect. 3.2.2) was selected as the implementation language of the ontology.
There was no need for a more descriptive language and the domain could be ontologized
up to an adequate degree with RDFS. The fact that RDFS was and is a W3C standard
also made it a good choice. A variety of ontology editors that can import and export
RDFS are currently available [29] but when this project started in the beginning of year
2002, Protégé-2000 [124, 61, 126, 36] was considered as the most reliable choice and could
be taken easily in use. However, Protégé does not support multi-instantiation even today,
i.e., one instance can belong to one class only even though RDFS specification allows
multiple rdf:type’s for one instance. Protégé supports only multiple inheritance of
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classes, which is why classes were used instead of instances whenever multiple inheritance
was needed.

To use RDFS ontologies with applications, methods for creating queries and mapping the
results of the queries with a user interface are needed. Jena [84], a Java-based [83] toolkit
for creating Semantic Web applications that supports RDFS was used. RDQL [130] (p.
27), a query language for RDF files comes with Jena but Jena can be used also directly
in an object-oriented fashion to create queries without RDQL. Perl [120] was used for
transforming and doing additional fixes to the files containing the ontology in a textual
format. Changing something with an ontology editor might be slower than doing the
same thing with scripts. The typical find-replace procedures can be done with normal
text-editors but complex editing problems must be handled with scripts19. W3C RDF
validation service [129] proved also useful as well as RDF visualization tools [52, 131].

4.1.3 Prototype Process Model

The requirement analysis was unclear and new technology was being used in the project.
The ontologization could not be divided into design and implementation stages, and
prototype model20 [65, 101] was the only suitable process type. Usually the clients of a
software development project are concerned mainly with the looks of the user interface,
it being the part of the software that the end users see. In this case however the ontol-
ogy’s category structure was a fundamental part of the exhibition software’s information
representation structure and the clients participated in the ontologization. Figure 15
depicts a diagram of the used prototype model.

Client evaluationFinal ontology

Acquirement of domain knowledge Building / refining prototype
Consultation of programmersConsultation of domain experts

Figure 15: The development model used in this ontologization process.

The process starts from acquirement of domain knowledge, possibly with the aid of
domain experts. When new information is received the ontologist can build a prototype,
possibly consulting the programmers. The prototype is then evaluated by the client to
decide how to refine it. If client evaluation is not needed the ontologist can proceed
by gathering more information that is added into the ontology. The ontology can be
refined also according to the client’s feedback without acquiring domain knowledge from
anywhere else.

The process goes on until the ontology is accepted by the client. With more complex
ontologies the client acceptance is only a matter of how the information in the ontology
is represented to the client but with frame-based ontologies the category structure can
be clearly understood by a client who is not a software expert.

The first prototypical version of the ontology was constructed in a couple of months
using textual summaries about the domain and some additional explanations from the

19The following kinds of regular expressions can be specified with Perl: ”If there is a certain character
string X somewhere after <, and before the next > in a file, then replace X with another string Y”.

20Or the Evolutionary model.
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client. A prototype of the exhibition software that used the prototypical ontology was
also constructed. The prototype was introduced to the clients who accepted the main
principles to be applied with the larger work.

4.1.4 Acquiring the Domain Knowledge

In the beginning of ontologization the ontologist does not have to think about the struc-
ture of the ontology itself but has to get acquainted with the subject domain. It is
important first to understand the domain before starting to create a formal ontology. If
categories and their relations are created before understanding the domain it is probable
that logically wrong or not optimal choices are made, which leads to unnecessary and
time-consuming extra repairing work later on. It is eventually less time consuming to
use time on finding a vast amount of source material (literal, visual, audial) in the first
place, than to always start again the process of searching for the literature when some
unexpected information is needed.

To make the ontology efficiently usable, reusable, and accepted by the largest possible
group of users, the ontologist should search for and use the possibly existing vocabu-
lary specifications and other guidelines of the subject domain. The vocabulary of the
domain has to be understood and accepted by domain experts, clients, users, and the
programmers. The relieving thing here is that the category structure of concepts facili-
tates understanding the meaning of terms that might otherwise be hard to understand:
predecessors and successors of an arbitrary category X determine the meaning of X (p.
15).

In this case, there was a short thesaurus that had been used with all the material anno-
tated in the database of the Library of University of Helsinki. However, the thesaurus
contained only a fraction of the words that were needed to describe the domain and
most of the used terms were picked from the literature by the ontologist and affirmed by
domain experts and clients.

The material used in the ontologization was based on historical literature [92, 90, 9],
modern literature [66, 109, 94], some Internet sources [68], client recommendations, and
on commemorative material about a few certain promotions [43, 44, 45]. Also the set of
628 images with image texts that served as the visual content of the exhibition guided the
process. Seeing what would be confronted in the annotation stage made the ontologist
to create the ontology accordingly.

Several meetings were held with the domain experts who had participated to and ar-
ranged promotions. They reviewed the ontology and gave hand-to-hand knowledge up
to a degree when some questions were only a matter of opinion between the domain ex-
perts. In these cases the ontologist fused the information into a cohesive whole. However,
in the end the client had the final word and the agreements made with the programmers
(such as the annotation structure and top level classes) had to be maintained because
changes in the ontology’s structure would have caused major malfunctions in the exhi-
bition software. By frequently consulting all the participants the ontologist managed to
get all the needed information into the ontology and the ontology also got accepted by
all the participants.
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4.1.5 Selecting Top Level Classes

The process of constructing the actual formal ontology in RDFS can be started by select-
ing the top level classes. These classes answer to question ”What has to be described?”
while the rest of the ontology answers to ”How is it described?” It must be understood
that one top level class alone does not provide the needed information to describe a single
photograph, but all the top level classes function as a whole as means to annotate and
retrieve the photos. The top level classes have to have the greatest contrasts to keep
them from representing redundant information. An overall description of the domain can
serve as the source material in this stage. The selection is done in a two-step process:

• 1. Picking up classes. Write down or underline the meaningful things that
clearly come out of the representation and are repeated in the text more than
others21, excluding those that are already included, if any.

• 2. Occam’s Razor. When you have identified some classes, look at them together.
Use the principle of triads and the has-test to create a hierarchy of these classes
(sect. 3.1.4). Move back to step 1 until you cannot find new classes from the
presentation, or when the new classes suit only as subclasses of the already included
ones.

After repeating the steps 1 and 2, the overall top level class structure should have been
formed. The top level classes are depicted in figure 16. All the top level classes are

Figure 16: Promotion ontology’s top level classes.

in contrast with each other and describe different sorts of things relative to each other.
Performances, Performers, Creators, and Works is an exception because it shares
some successors of Persons, Roles, and Institutions and Happenings: performances
are also happenings and performers have a role. The other top level classes do not share
successors. Places collects the kinds of places that have a street address. Places could
be taken also as Physical objects, but in contrast Physical Objects collects touchable
objects that are smaller in size than those collected by Places, such as paintings, badges,
and rings that do not have a street address. Also Persons can be taken as Physical

Objects, but in contrast Physical Objects does not collect living beings. Promotions

collects information about the general characteristics of different promotions, such as the
date of the conferring ceremonies and the essential persons and their roles. Promotions

could be taken as a successor of Happenings, but Happenings collects only happenings
that occur during promotions in a hierarchy.

The obligatory requirement of the present class structure is that it should cover the
subject domain so that every possible photograph about the domain could be placed

21This technique is used with traditional software design.
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below one or more top level classes. If this can be done, it is only a matter of deepening
the structure to make it more descriptive. If the top level classes do not cover the domain,
more top level classes have to be created.

4.1.6 Working up the Ontology

All classes of the ontology represent the unchanging continuants (p. 18), the stable
structure of things relative to the promotion happening. A part of the instances are also
continuants, like those instances that describe the faculties and student clubs. Another
part of the instances describes the occurrents that are different in every promotion,
such as the persons who participate to promotions in different roles. The borderline
between the continuants and occurrents is however vague: the promotor changes in every
promotion, but the same principal usually participates to more than one promotions.
The top level classes of the ontology do not have direct instances, but have more specific
successors that do have instances. If the class-instance structure is seen as a tree, the
instances are situated approximately as the leaves of the tree.

In the optimal case, once the classes have been selected the overall hierarchy is ready
and only the properties of the classes have to be created before creating the instances.
In practice the class structure, properties, and their value specifications change during
the process. Even with nearly perfect design methods something usually has to be
reworked. Naturally, the structure of the annotation schema affected greatly on the
ontology’s structure. The annotation is discussed in detail in section 4.2 and for now it
is enough to understand that the annotation is done by linking the classes and instances
of the ontology to photographs, in a similar fashion than in section 3.1.5. The properties
(rdf:Property) serve as the means to identify the instances in the annotation process
and are used in semantic reasoning (sect. 4.3).

The lacking of tools to implement partial inheritance of properties enforced the ontologist
to create a minimal set of properties: a class inherits all properties of all its predecessors,
of which many can be useless for describing an instance, and giving values for all of the
properties can include redundancy in some occasions. One one hand the lacking of partial
inheritance is a good feature: having very many properties requires more organizational
efforts from the ontologist, and it is good to keep the ontology minimal. On the other
hand the partial inheritance would allow richer expressiveness, and if planned accurately,
would decrease the redundancy.

The lacking of multiple inheritance of instances that was due to the ontology editor
caused problems, and in many cases the things that would have otherwise been described
with instances were described with classes to be able to place them under more than one
class.

Creating new classes and properties walk hand in hand: does a property suit for a class
or does a class suit for a property? Top level class Places serves as an example of
deepening the class structure. It has to describe all places used in promotions up to
an adequate degree. The class is given three properties that come first in mind: name
of place, address, and description of place. The properties’ value type is literal. The
ontology should be as simple as possible, which means that a property should suit for as
many classes as possible. However, name of place does not suit for any other top level
classes, no more than description of place. A property’s rdfs:label should not bind the
property to a certain class only if it can be avoided. If it would, there would eventually
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be very many properties such as name of happening and name of physical object, etc.
To avoid this the rdfs:labels of properties are modified: name of place is changed into
label and description of place into description. Only address is left unchanged since it
does not need to belong to other classes than Places.

Having the mentioned minimal properties in use, a total of 47 instances (fig. 17) are
created for Places based on commemorative material [43, 44, 45].

Figure 17: Instances of Places. The value of property label is shown.

The rdfs:labels of the instances fit on one screen, and any user could find the wanted
ones from within the others, but the final exhibition would have a lot of more instances
and searching would then require browsing up and down in the user interface. This is
why there is now a need to deepen the class structure and create subclasses for Places.
The instances of figure 17 describe buildings, streets, squares, and an island, and sub-
classes are created for Places that describe all these. When both classes and instances
are thought as categories, the principle of triads and has-test can be used again. The
instances of figure 17 are moved under the new classes in figure 18.

Figure 18: Refined subclass structure of Places. On the right side of a class is an integer
indicating the amount of its instances.

There are still 30 instances under Buildings in figure 18, which causes a need to further
deepen the structure.
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The final structure of Places is depicted in figure 19, where the instances of Buildings

of figure 18 are distributed between the subclasses of Buildings according to their
characteristics.

Figure 19: On the left side of the classes that have subclasses is a ball-like symbol with a
line pointing either down or right. Right-position indicates that the subclass- structure
is hidden, and down-position indicates it is revealed.

Some Buildings are traditionally used in every promotion like University Main

Building, Old Student House, and Cathedral of Helsinki, which were given their
own classes. There are photos taken of places from different directions, which is why
instances describe different visual views of the places. In figure 19 the rdfs:labels of
the 6 instances below Cathedral of Helsinki were changed, resulting in 3 instances.
There was no longer a need to tell that the instances describe the Cathedral of Helsinki
with the rdfs:label. Any user could understand it because the instances are under the
class that tells this information. Other information that was previously included with the
instances’ rdfs:labels could be described with successors of the other top level classes:
the year was discarded from the end of the rdfs:labels because the information about
the time comes by linking an instance of successor of Promotions and Festive Ses-

sions (p. 39) with an image in the annotation stage. After the year was discarded some
of the rdfs:labels turned out to be identical, like the two instances with rdfs:label

’Senate Square facade’. In these kinds of cases only one instance was maintained.

Now the class structure has been extended without adding more properties to Places

or to its successors. In the final annotation stage more instances were created, but as
assumed, they were centered on few specific places. The same kind of principle was used
with all the top level classes.

The previous example also concretized the usefulness of the category tree approach. In
figure 17 the amount of characters22 that were used to describe the Cathedral of Helsinki
was 256. In figure 19 the amount was only 6723. And further, the annotator does not
even have to write any text, but can only select instances from the ontology. The more
images are annotated, the greater is the relative benefit.

4.1.7 Testing the Ontology

Before the testing stage the actual 628 photographs that were to be annotated did not
directly affect on the structure of the ontology. They however served as a perfect material
in testing the ontology. If the ontology is not tested before the actual annotation starts,
unpleasant changes might have to be made to the ontology during the annotation process.
The changes might make the previously made annotations partly or totally useless and

22The total amount of characters in the instances’ rdfs:labels.
23When the amount of characters in the rdfs:label of class Cathedral of Helsinki is also counted.
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the annotator/ontologist would then have to keep a memo of subsequent annotations and
changes, which could easily lead to an unsolvable mess with all the classes, instances,
images, and their relations.

During the testing many unexpected things had to be described, which again raised a
need to rework the ontology, mainly by adding new classes, instances, and properties,
but also by removing or combining the useless ones. The testing itself is straightforward.
Images are annotated and two things are observed (categories again denote both classes
and instances):

• Can the present category hierarchy describe the photographs’ physical elements
(sect. 1.2) accurately enough? One category alone should not describe too wide
concepts or too many images. If this is the case the hierarchy should to be extended.

• Is the hierarchy too precise? When some categories are not used at all they should
be deleted or combined with other categories. When two or more categories de-
scribe very similar things they should also be combined into one, following the
triadic principle (sect. 3.1.4).

It has to be analyzed somehow just how deep and descriptive the category structure
should be or if it is already good enough, keeping in mind the requirement to keep the
structure minimal. If there are as many categories as photos it is quite clear that the
structure is too deep. If there is only one category and hundreds of photos the structure
is too shallow. The answer lies somewhere in between.

One way to analyze the soundness of the structure is to measure the relative change.
The amount of categories is relative to the amount of photos they describe. A certain
percentage x of the photos can be annotated, reforming the category structure to be
optimal for describing these. Then another x% of the photos is annotated. If the
structure has to be changed as much as it changed with the first x%, then something is
wrong with the ontology, or the photos are very heterogeneous. If the structure changes
less than with the first x% the ontologist is probably on the right course.

Let ∆I denote the amount of new images and ∆C the amount of new categories. In the
general case, in the beginning of ontologization the amount of categories can rise almost
linearly relative to the amount of annotated images: ∆I ≈ ∆C. When ∆I is big enough
it affects ∆C only to a logarithmic degree: ∆C ≈ log(∆I). This is quite natural: the
more images are annotated the more words or categories are needed to describe them,
but no matter how many images are annotated they all can be described with a finite
set of words or categories.

4.1.8 Analysis of the Created Ontology

The ontology’s final formation is analyzed one top level class at a time in the following,
apart from Places that has already been analyzed. Some conventions have to be used
in order to clarify the explanation of classes, properties, and instances:

• The references to the RDFS specifications such as rdfs:label and rdfs:range are
typed in typewriter font, as well as some specifications of the ontology editor.

• The rdfs:labels of classes are typed in bold font and those of properties in
italics.
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• When term ’category’ is used it can denote both classes and instances, but not
properties.

• The following phrases mean that X is a subcategory of Y: ”X is placed under Y”,
”X is created for Y”, ”Y has X”.

• Let the meaning of the following phrase be clarified: ”successors of X are values of
successors of Y.” Classes X and Y and their successor classes can all have instances.
Y can have or can have inherited properties from its predecessors. One or more
of these properties take instances of class X, and instances of X’s successor classes
as values. Also, when ”property p takes successors of X as values”, the p can have
all instances of X and all instances of all successor classes of X as values.

• The value of rdfs:label of instances is based on some rdf:Property defined
for the instances’ parent class. The value of instances’ rdfs:label could not be
asserted directly because of the ontology editor. For example, property label is not
the same as rdfs:label that belongs to every class, property, and instance; only
the value of rdfs:label can be set to be the value of property label24.

Figure 20 explains the visual representation of classes and properties that is used from
now on. A line is drawn between the properties and the class that the properties are
defined for. The blue S on the left side of person in role indicates that the rdfs:domain

of property person in role is class Essential Roles. White S indicates that the property
is inherited from a predecessor class of Essential Roles. Name is the rdfs:label of

Figure 20: The style of representing classes and properties. The bottom dash in
property name is due to the convention of the ontology editor.

the property. Type is the rdfs:range of a property, that is either String (=Literal)
or Instance with all the top level classes and their successors. Other Facets indicates
the rdfs:range of the property when the value type is Instance. In figure 20 the
rdfs:range of property person in role is class Persons, and so person in role can have
only successors of Persons as values. The rdfs:label that is on the left side of person
in role indicates that the value that is given to person in role serves as the rdfs:label

of instances of Essential Roles25.

Cardinality is either single or multiple and indicates how many values a property can
have, or has to have. This OIL/OWL (sect. 3.2.2) feature was not included in the
final RDFS-ontology that was used in the exhibition, but was used occasionally in the
ontologization and annotation stages. The same goes with required that specifies that
this property must have a value, when without the explicit specification the value would
not be obligatory.

24Value of property name was the value of the instance’s rdfs:label in fig. 14 in p. 26.
25Property person in role takes successors of Persons (p. 40) as values. The rdfs:label of successors

of Persons in based on property name of person, and so also the rdfs:label of successors of Essential

Roles is based on the textual value of name of person.
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Promotions and Festive Sessions

Every photograph is connected to a certain time and place. Even though in most of the
cases the date (day, month, year) of the photographing process was known the needed
accuracy of time specification is in the level of single promotions, represented by property
date of conferring (fig. 21), that served also as the rdfs:label of the instances. It is
more important to know that a happening occurred during Garland binding day

(successor of Happenings) in a promotion arranged in year x than to know that it
occurred in the 11th, 12th, or 13th of June for example.

Figure 21: Structure of Promotions and Festive Sessions.

The timely ordering of Promotions goes first by centuries represented by classes. The
classes have instances that describe single promotions that occurred during the corre-
sponding century. Festive Sessions describes promotions where the promovends are
promoted to their titles in a less ceremonial way. Every property of every instance was
not given a value, but with all the instances at least promotion faculty, university, and
date of conferring were given values. There can also be several promotion ceremonies
during the same date, which raised the need to distinguish separate promotions from
each other by other means. Also promotor and general garland binder were given values
if these could be found from the used literature.

Most of the properties were not used in the exhibition but they were very useful during
the ontologization and annotation processes. The instances describe essential information
about single promotions and the ontologist could easily check out information using them.
Without these instances the ontologist would have had to check out the information from
books, papers, and other sources, which is much slower than to check it with a couple
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of mouse clicks having the needed information present at all times when the ontology
editor was open. Successors of Promotions and Festive Sessions were linked to about
95% of the images in the annotation, which is more than with any of the other top level
classes.

Persons, Roles, and Institutions

Persons, Roles, and Institutions collects Persons, Essential Roles, Groups, and
Institutions (fig. 22). There were altogether 507 persons annotated in the system. All
names of the persons could not fit on one screen and the class structure needed to be
extended to avoid up-down scrolling in the UI. Subclasses A, B, C, ...,Ö were created
to describe persons according to the first letter of their family name. An alphabet does
not suit as a subclass of Persons in a philosophical sense but it is very intentional and
intuitively clear to find a person by the first letter of family name: predecessors and
successors of an arbitrary category X determine the meaning of X (p. 15). To increase

Figure 22: Structure of Persons, Roles, and Institutions. M on the right side of a
class indicates that the class has more than one superclass.
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the philosophical soundness of the class structure an extra class could have been added
between Persons and the alphabet-classes, such as Persons categorized by the first

letter of the family name, but that would not have been intentional and would have
caused an extra mouse click every time a user wanted to find a certain person through
class Persons. The division to alphabets could also have been programmed in the UI
of the exhibition software, but the final result would have anyhow been more or less the
same.

Values of property name of person serve as values of the rdfs:label of the instances. The
values were given in form family name 1st name 2nd name nth name. There could
have have been distinct properties family name, first name, second name, mostly used
first name, nickname, etc., but then the programmers would have had more work in
knowledge representation. They should have had to connect up to six or more name-fields
to reveal one name. Some persons have a family name prefix like ’von’, or ’af’. This was
added separately to the name that was shown in the exhibition in order to have correct
alphabetical ordering of the persons’ names. Property other names was created because
of maiden names and other possible changes of name. Properties mother and father were
created to support semantic reasoning (sect 4.3.1); mother-father relationships are alone
sufficient for creating an exact family tree assumed that all participants in the chain of
mothers and fathers are known.

Essential Roles collects different roles of persons that appear in more or less every
promotion. Many persons participate to more than one promotion during their life in
different roles: person in role allows one person to have many roles, and many persons
can have the same role during one or more promotions. The rdfs:label of instances
of successors of Essential Roles was based on the rdfs:label of the value of person
in role, which in the end was based on name of person. Property connected to which
promotions facilitated the organizational efforts of the ontologist who could check to
which promotions a certain person or a person-role had participated to. Properties
granted title (e.g. counselor, Ph.d.) and job title (e.g. managing director, researcher)
indicate the social status of a person during the promotion.

Groups collects subclasses of Essential Roles in a hierarchy. For example, Pro-

movends is subcategorized into Master Promovends and Doctor Promovends,
and their subclasses are also subclasses of Essential Roles. Groups collects also rel-
atively rare roles that naturally are not subclasses of Essential Roles. Groups also
describes photos where are people whose identity or a specific role is unknown. If there
was a group of promovends in a photo with unknown identities and it would be un-
clear which kinds of promovends they were, then the photo would be linked directly to
class Promovends. The same principle was used with all successors of Groups. If an
instance was needed to describe this kind of group, property label would serve as the
rdfs:label, and not the person in role which would be unknown.

Institutions collects Delegations, Faculties, Student Clubs, Student Unions, and
Historical Names of University of Helsinki in a hierarchy. Successors of Institu-

tions were used as values of some successors of Promotions and Festive Sessions

and Physical Objects.
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Happenings

Happenings collects happenings of different nature together. All successors of Hap-

penings have exactly three properties as depicted in figure 23. There are two or more
paths to every bottom-most successor of Happenings in Sequence that collects hap-
penings in a sequential hierarchy. The other subclasses of Happenings classify succes-
sors of Happenings in Sequence based on the type of happenings: Audial Perfor-

mances, Dance Happenings, Dining Happenings, and Processions. Unofficial

and Rare Happenings is an exception because its successors are not successors of
Happenings in Sequence.

Figure 23: Structure of Happenings.

The happenings have had a relatively stable sequential ordering in promotions through-
out the years: the four happening days are subclasses of Happenings in Sequence.
Act Day, Dance and Excursion Day, Flora Day, and Garland Binding Day col-
lect more condensed happenings that occur during those days, and so on. In addition to
the hierarchy, the sequence of the happenings was specified by using the ASCII ordering
[7] of the value of property orderBy that was defined for all classes and instances. When
two categories X and Y have the same supercategory, and the happening described by
X occurs before the one described by Y, the value of X’s orderBy is for example char-
acter ’1’, and Y’s character ’2’. The ASCII order of ’1’ is lower than ASCII order of ’2’,
and so X is revealed higher, or earlier to the user. This method is adequate to specify
simple sequences but is not enough with more complex ones, such as with overlapping
sequences. About two weeks of work of the ontologist and the programmers was wasted
on experimenting too complex solutions to implement the sequential ordering, when the
solution was eventually very simple.

Audial Performances is first subcategorized along the type of the performance. Every
audial performance in promotions belongs to Musical Performances, Rune Reciting,
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or Speeches. There are lots of different Musical Performances in all of the four main
happening days, and so Musical Performances was subcategorized based on those.
There are also lots of speeches in every happening day, so Speeches was subcategorized
like the Musical Performances. There are however only two occasions where rune
reciting usually takes place, and it would have been unnecessary to have categories for
all four happening days. This is why Rune Reciting is subcategorized based on the
name of the happening where the reciting takes place.

Dance Happenings was a bit unclear categorizing effort. It is subcategorized into
Ball, Dances, and Dance Rehearsals. Garland Binding Day Ball was named
after the day it takes place, but Promotion Ball, Nightly Dances, and Dances of

Excursion all take place during Dance and Excursion Day. Creation of an extra
class, Dance and Excursion Day Ball, would have anyhow been unnecessary because
there are altogether only four ball-happenings, and no ball-happening occurs during Act

Day or Flora Day. Dances was also a trouble spot. It describes the dances that are
usually danced in promotions, but dances are not happenings. Placing Dances as a
subclass of Dance Happenings was again a pay-off case where an easy optimal was
reached by letting intentionality override philosophical soundness. It would not have
been intentional to make Dances a top level class, and Dances would not suit as a
subclass of any other top-level class. However, a user can find Dances by navigating to
Dance Happenings, but the user might be misleaded because the first selection has to
be Happenings.

Dining Happenings was subcategorized based on the official names of the dining hap-
penings, or on the happening day if there was not an official name. An exception is
Toast26 that describes all the toasts in promotions. Processions is subcategorized
based on the names of the places where the processions are heading to. Unofficial and

Rare Happenings is subcategorized simply by the unofficial name or description of the
unofficial happening.

Physical Objects

Physical Objects (fig. 24) appeared to be the most problematic top level class in
sense of the philosophical soundness of the class structure, because the concept ’physical
object’ covers everything except abstract things (sect. 3.1.3). All Physical Objects

have the basic properties description, label, and orderBy.

Assorted Objects collects objects with divergent nature. The only successor of As-

sorted Objects with extra properties is Paintings and Photo Albums that are
situated in Places and have Artists as manufacturers. In some sense photo albums
belong to Printed Matter, but since these photo albums were manually constructed
in the early 20th century, they do not belong to Printed Matter. This indicates that
Printed Matter collects only things that are automatically printed in a printing house,
an information stated also by the class’ rdfs:description.

Flags, Marks, and Badges collects all physical objects that identify institutions and
show persons’ rank, role, or any kind of granted or inherited social status. There are
lots of traditional Decorations, Flags, Seals and Heraldic Symbols, and Badges

visible in promotions. Ushers’ Ribbons have from one to five colors, and Ushers

belong to different Student Clubs. Flowers bring color to promotions, as well as

26A toast is a drink that is proposed to honor someone or something.
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Figure 24: Structure of Physical Objects.

subclasses of Headgear, of which many are also subclasses of Symbols of Academic

Rank and Symbols of Office. Sculptures have manufacturers and they are situated
in different Places. Different kinds of Vehicles are used in promotions, such as Cars,
Ships,Trams,Busses, and Horse Wagons.

Clothes and Dressing was first a top level class but it was forced as a subclass of
Physical Objects due to its small size. Clothes and Dressing was changed several
times during the process. First Clothes was subcategorized into Co-ordinated Out-

fit that stands for complete outfits like dinner jacket and tail coat, and into Garment

that stands for single garments. Garment was again subcategorized into UpperPart

and LowerPart, as recommended in ICOM standard [75]. The subclasses of Upper-

Part and LowerPart were categorized into general types based on which parts of the
body they cover. Later that categorization proved to be too complex and the result was
to subcategorize Clothes into Headgear that has many subclasses, and to set all the
other clothes as direct subclasses of Clothes. Dressing Instructions are not Physical

Objects or Printed Matter even though they can be printed on a paper, but a user
can intuitively find Dressing Instructions through Clothes and Dressing Instruc-

tions. The problem is that it is unusual to search for dressing instructions starting from
Physical Objects.
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Performances, Performers, Creators, and Works

Performances, Performers, Creators, and Works (fig. 25) was constructed in
course of providing an interesting view to the exhibition for people who are interested
in performances and about things strongly related to performances. Photographs about
different performances constituted also a large part of all the photos to be annotated.
The class hierarchy consists mainly of successors of Happenings and Groups. The
only subcategory of Performances, Performers, Creators, and Works that is not
a successor of any other top level class is Pieces of Work.

Figure 25: Structure of Performances, Performers, Creators, and Works.

Audial Performances are performed by Performers. Performers perform Pieces

of Work that are created by Creators of Works. This way the structure describes dif-
ferent aspects of performances. All subclasses of Creators of Works are also subclasses
of Persons, Roles, and Institutions > Groups > Invited Guests > Artists.

Conclusions of the Analysis

The whole process of ontologization and annotation took less than four months, but the
structure of the annotation schema (sect. 4.2) was finalized when there was only a couple
of weeks left for the ontologization and annotation. The annotation schema concretized
the usage of the ontology and made some resolutions too complex and useless. This
lead to removing many classes, properties, and instances. For example, in the early
stages of the ontologization Audial Performances had property performed by, but
it was discarded because the same information was obtained by linking an instance of
successors of Performers directly to an image in the annotation stage.

The result was a simple RDF Schema that still had many properties that were not
used with the exhibition (sect. 4.3). The top level classes of the promotion ontology fit
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describing happenings of very divergent nature27. All happenings occur in some place(s).
Traditional happenings naturally have a long tradition, i.e., they happen in a yearly basis,
or follow some other period. Persons in different roles participate to happenings, and
the happenings have subhappenings. There are clothes and other physical object present
in happenings, and happenings have performances and performers who perform pieces
of work. The similar kind of top level class structure with the properties can be used
in ontologization of happenings in general, and also many subclasses of the top level
classes suit for describing happenings in general. In a nutshell, the highest levels of
the hierarchy are the most domain-independent, and the lower levels are more domain-
dependent. This is very natural and the same kind of phenomenon can be seen with
more or less all frame-based or category tree-based ontologies.

4.2 Ontology-Based Image Annotation

This section examines structure-based annotation with frame-based ontologies, continu-
ing sections 2.3 and 3.1.5. Section 4.2.1 discusses how the annotation process needs to be
guided and constrained by the annotation system in general level. Section 4.2.2 explains
the schema that is used in annotating images with the promotion ontology, providing a
case example of annotating one image.

The properties of frame-based ontologies (rdf:Property) are again called fields just
as with the field-based and structure-based paradigms in section 2. Every annotation
schema must have at least one field where the annotator can insert values. The values
of the fields are selected from a category tree. Both classes and instances of frame-based
ontologies are again called categories: the dichotomy is useless from the annotator’s point
of view since both classes and instances of RDFS can have same kinds of fields and same
kind of values for the fields. A category tree that is used in selecting values for a field
can denote a set of distributed ontologies, a set of branches of a single ontology, or any
combination of these.

4.2.1 Constraining the Annotation

With the simplest structure-based annotation schema the annotator selects a top level
category from a category tree and follows a promising path to find the most suitable
category as a value of the field. When one category is selected the annotator starts again
from the top until an adequate amount of categories have been selected. The naviga-
tion through the tree can be intuitively clear and provides the contextual information
needed to retrieve the image later on. However, with complex schemas the annotation
process can be hard. Annotation and ontologization cannot be cleanly separated because
categories can possibly be created, deleted, related, and edited in many ways in both
processes. The process starts by choosing one field from within a set of many fields. The
annotator selects categories from a tree as values of the field or navigates through the
tree and creates a wanted kind of category. The created category can always have a set
of fields that can take categories as values: the categories that are selected or created as
values can again take categories as values. In theory the cycle could go on forever even
with an ontology with only one category to start with:

Set of fields → Category tree → Set of fields → Category tree . . .

27Class Promotions should naturally be renamed after the happening that it describes.
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Without any constraints the responsibility of coherent annotations lies totally on the
annotator, which is why the annotation system needs to somehow guide the annotation
process, constraining the categories and fields presented to the annotator. The deter-
ministic methods of constraining the annotation are 1) cardinality constraints, 2) range
constraints, 3) tree pruning constraints that take annotators’ actions in account, and 4)
editing constraints that specify annotators’ rights to edit the category trees.

Cardinality Constraints

The cardinality constraint states the minimum and maximum amount of values that one
field can have. The minimum and maximum amount of values can be stated with a
closed range [min max]. [0 ∞] states that the field can have any amount of values. [2
∞] states that the field must have at least two values, but there is no upper limit to
the amount of values. [2 2] states that the field must have exactly two values, and [2
4] states that the field must have at least two values, can have three values, but cannot
have more than four values. [2 4 6] states that a field can have two, four, or six values,
and cannot have for example three or five values.

Range Constraints

The range constraint states what kinds of values a field can have. When the range is ℵ,
the annotator can select any natural number as the value of a field. When the range is
ASCII, the user can select ASCII-characters as the value of the field. The range can also
be ASCII > {A, B, C..., Z}, that means that the annotator can select only upper-case
ascii characters from A to Z.

Tree Pruning Constraints

The search space can be constrained based on the annotators’ actions by using basic tree
pruning methods. When the annotator has selected a set of categories as values of the
fields, the paths to them can be closed by the annotation system so that the amount of
categories that can be selected next decreases in every step. Some examples of pruning
with the category trees on figure 26 are examined. Let the first selection be category C

BA

C D E

F G H I C D E F{}

A B

Figure 26: Two category trees used in annotation.

of the tree on the left. In the general case it is rational to specify that the annotator
cannot select any of C’s predecessors or successors for describing the same thing. For
example, if C was Human, then F and G would further classify the type of the human.
If also F or G were selected it would be intentional to discard C. Selecting A would also
be irrational if C was already selected: if C was Human, nothing would be gained by
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annotating A, which could be for example Mammal. The rational choices after selecting
C would be B, D, E, H, or I because they are not in successor-predecessor relationship
with C.

With the strict definition (p. 17) two or more subcategories of category X share relatively
nothing in common and their intersection is empty, as can be seen in the tree on the
right of figure 26. These strict pruning rules could be used when describing positioning
in a contest for example: normally when a person wins a gold medal the same person
cannot win a silver medal in the same contest. If the annotator selects the gold medal as
a value of a field that indicates a person’s positioning in a certain contest, another medal
cannot be selected as a value for the same field. The pruning rules can be applied in
every level of a category tree in different ways. Some rule could constrain the annotation
of a certain tree, a certain branch of a tree, or only a set of categories that are not in
predecessor-successor relationship.

Editing Constraints

Constraints can be set on creating and using categories to avoid too long or cyclic paths in
annotation, and to differentiate the annotation from ontologization. Different annotators
can be given different rights to edit trees or parts of trees in a similar fashion than with
traditional file systems. Let integer x denote the constraint. When x = 0 the annotator
cannot create a category. When x = 1 the annotator can create a category C1

28, but
cannot create more categories as values of fields of C1. When x = 2 the annotator can
create a category C1 and create another category C2 as a value of a field of C1, but
cannot create categories for values of the fields of C2. With x = n the set of linked
category-field pairs can have up to n members.

Constraints can be set also on using the categories that existed before the annotation
started in a similar fashion, and the constraints can be combined. For example, in triple
[x, y, z] x denotes the constraint on creating categories, y on using the already existing
categories, and z for maximum amount of using both existing and new categories in the
linked chain of category-field pairs. The constraint [1, 2, 2] specifies that the annotator
can create one new category in the linked chain and can use also two already existing
categories, but the maximum length of the chain is 2.

Combinations of Constraints

The discussed constraints can be combined to create unique annotation schemas. Let
the goal be to create an annotation schema where the annotator is able to link n different
types of specific metadata to an entity. One solution is to create a schema that contains
n fields. Each field is mapped to a certain category, and when the annotator selects
values for a certain field, a certain top level category is presented to the annotator. The
annotator can, or has to select a certain amount of categories as values for each of the
fields with certain pruning conditions. The annotation is completed when all the fields
have been given an adequate amount of proper values.

28Note that C1 can denote also a set of categories that are not in predecessor-successor relation.
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Problems

Maintainability is the greatest challenge of structure-based annotation, assuming that
there exists a commonly agreed ontology that can be used in annotation and retrieval.
Possible modifications of the ontology that was used in the annotation can make the
annotations totally or partly useless. When the ontology is modified, the annotation
system and/or the administrator of the system needs to verify that the modifications are
not in contradiction with the annotations that were created using an older version of the
ontology.

As an example, let there be a category tree > > Roundness. The annotator has linked
an image of a circle to category Roundness. When the tree is modified into > >

Roundness > Circle, the annotation system should ask the annotator/administrator
to verify whether or not the previously annotated image belongs under the new category.
Then again, if Circle is deleted later on, the system can automatically link the image
to the supercategory of Circle. With the categories only, the changes in ontologies
can be handled quite easily assuming that there are enough annotators to verify the
re-annotation of images. Handling changes of other relations of ontologies might then
again require more complex verifications.

Annotators’ errors are also naturally problematic as with all annotation paradigms. A
lazy annotator can link an image about a circle to category Roundness, and when a
retriever selects Roundness > Circle, the image is not retrieved. With systems that
have thousands of annotated images these kinds of flaws are easily permanent, unless
advanced feedback and computer vision techniques (appendix A) can be applied to verify
placement of the annotated images somewhere in the future.

4.2.2 Annotation with the Created Ontology

The overall case was to annotate 628 photographs about the promotion ceremonies with
the created ontology (sect. 4.1), and one photo is annotated here as an example. There
were no constraints set on the annotation except that the top level classes could not be
changed. This way the annotation can be seen also as ontologization, or as testing the
ontology: many classes, instances, and properties were created, deleted, combined, and
edited in many ways during the process. About 500 out of the 628 photos were previously
annotated with field-based paradigm. These annotations were transformed into RDF
format that could be used by the annotation editor29, and the textual descriptions of
the existing annotations were used as a reference in annotating the photos with the
annotation schema in figure 27 in p. 50. The rest of the images were received from the
UHe faculties with textual descriptions and scanned from books and from other sources.

The annotation schema enables linking every class and instance of the domain ontology
to an image30. The schema was designed to describe different sorts of media formats, and
so Media Element has properties that fit describing also video and audio in addition
to photos. Photograph then again has special properties that suit for describing only
photographs. As stated in section 1.2, some properties describe the abstract concepts
that are represented by images’ physical elements and some properties describe other

29Protégé-2000 was introduced in sect. 4.1.2.
30In fact, also the properties (rdf:property) could have been annotated, but these were not needed.
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Figure 27: Classes and properties of the annotation schema.

things that are explicitly connected to the image. Media Card was used to describe
the physical elements, in addition to property topic that was revealed in the exhibition
but was not used in the retrieval. Also reference words describe the images’ physical
elements but neither this nor the other properties of Photograph were used in the
exhibition, with the exception of image file that identifies the file names of the photos
and media card that links an instance of Photograph to an instance of Media Card.
Media Card has properties mediaCardID and IncludedInstances that links classes and
instances of the domain ontology to an instance of Media Card. The rdfs:range of
IncludedInstances is THING31, and so also classes of the domain ontology could be given
as values to IncludedInstances.

The only guideline in the annotation process was to describe the essential and interesting
things in the images and to make the annotations as complete as possible, i.e., successors
of every top level class should be annotated whenever intentional. The simplest solution
to guide an annotator that has no earlier domain knowledge would be to create an
annotation schema that has 6 fields that are mapped to the six top level classes of the
domain ontology. However, the ontologist and the annotator was the same person there
was no need create an annotation schema that guides the annotator. The subject of the
annotation is the photo on figure 28 in p. 51.

The annotation starts by creating an instance of Photograph and giving textual values
for the fields if these are not already set. Up to this point the annotation goes like with
the field-based paradigm. After the needed fields have been given values the annotator
creates an instance of MediaCard as value of media card and gives it an id such as
Image12345.jpg.

31Protégé’s THING corresponds to rdfs:Resource (p. 26) or > (p. 14).
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Figure 28: Image text: ”Promotion of faculty of Philosophy. Honorary Doctor Linus
Torvalds on a procession to divine service 2.6.2000.”

The actual linking of the image to the domain ontology is done by selecting classes and
instances of the domain ontology as values for IncludedInstances. The annotator has
a set of top level classes to start with as depicted on the left side of figure 29. The
annotator has to select one of the six top level classes and follow a promising path to
find the most accurate class or instance. The annotator argues that the image is about
a happening called ’procession to divine service’ based on the image text of figure 28,
and selects path Happenings > Processions > Procession to Divine Service as
depicted on the right side of figure 29. If the wanted kind of successor of Happenings is

Figure 29: Top level classes on the left, and class structure of Happenings on the right.
The path to the most accurate class is revealed, and the selected class or instance is
highlighted with blue.

not found the annotator can create a new class or instance, or select a less accurate class
or instance. In most of the cases, as with this one, more than one class and instance suit
describing the subject image. After the first selection the annotator has to reason which
top level class to browse next.
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Every Happening occurs in a certain Place. There were many cases where it was hard
to decide which places to select, as with the this one. There was only a small part of the
National Library visible in the image but it was selected (fig. 30 in p. 52). because there
were not any ’good’ images taken about the library32 and it was shown better than other
places in the subject image. Only a small fraction of the ground level of the entrance

Figure 30: Annotation of Places on the left and annotation of Persons, Roles, and

Institutions on the right. The integers indicate the amount of instances of the corre-
sponding class. All instances of Honorary Doctor are not shown.

to Cathedral of Helsinki is revealed in the image. If the entrance was also selected the
users would probably be misleaded: a user of a photograph exhibition assumes to see
whatever she chooses to see and if a user chooses to see the entrance to Cathedral of
Helsinki it should also be shown, preferably with a good image. Apparently there were
lots of ’better’ images about the entrance, which is also a reason why the entrance was
not linked to the subject image. Also the Union Street (situated in between the library
and the church) was not selected because it could not be seen at all in the image, even
though the promovends are walking up to the church from that street.

The image text of figure 28 tells that Honorary Doctor Linus Torvalds is in the image.
The annotator selects path Persons, Roles, and Institutions > Essential Roles >

Honorary Doctor > Linus Torvalds, as depicted in figure 30. The same instance can
be reached also via Persons, Roles, and Institutions > Groups > Promovends >

Doctor Promovends > Honorary Doctor > Linus Torvalds. Selection of a successor
of Persons would be unnecessary after selection of successor of Essential Roles or
Groups because the information about the person in role is obtained from property
person in role that belongs to all successors of Essential Roles and Groups.

If this was the first time that honorary doctor Linus Torvalds was selected the annotator
would have to create an instance of Honorary Doctor, and give values for all the fields
of the instance. Some of the fields (fig. 22, p. 40) take textual values but connected to

32This was know because the same annotator annotated all the images.
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which promotions take successors of Promotions and Festive Sessions (fig. 21, p.
39) as values, and person in role takes successors of Persons as values. If the needed
instances do not yet exist they have to be created. When all the needed fields have been
given values up to an adequate degree, this part of the annotation is done, and in the
next time the same person-role can be directly selected from the ontology.

Promotions and Festive Sessions provides the date when the conferring ceremony
was held, the faculty that arranged the promotion, and much more information. Knowing
the date 2.6.2000 it was trivial to select path Promotions and Festive Sessions >

Promotions by Century > Promotions in 21st Century > 2.6.2000, as figure 31
depicts. If there were two or more conferring ceremonies in the same day the secondary
search criteria would be the faculty because one faculty can have only one conferring
ceremony in the same day.

Figure 31: Annotation of Promotions and Festive Sessions on the left and annotation
of Physical Objects on the right.

Annotating Physical Objects (fig. 31) was straightforward. The objects that can be
seen in the image are selected. In this case there were many physical objects worth of
selecting in the same image: the red decoration, doctor’s sword, doctor’s hat of faculty
of Philosophy, and doctor’s diploma. The knowledge that the diploma was doctor’s and
not master’s came from the fact that the diploma was carried by a person with a sword,
and only doctors have swords in promotions. Also the only sword in the ontology is
Doctor’s Sword that could have been noticed by an arbitrary annotator without any
domain knowledge. If the annotator would not have any domain knowledge, had not
seen the other images and image texts at all, and had no ability for semantic reasoning,
the safest selections would have been Decoration and Headgear. The image retrieval
system that uses the annotations is examined next.
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4.3 Ontology-Based Image Retrieval System

This section examines and explains a fully implemented ontology-based photograph ex-
hibition system called Promotor33. The system complements the ideology of structure-
based (or view-based [151, 123, 16]) search by using the Promotion ontology (sect. 4.1)
as an information retrieval structure and as the basis of recommending images. It was
not known exactly what was the exhibition going to be like in the ontologization stage
and some features of the ontology were not used at all in the exhibition. Even though
formal ontologies can be used in many ways, the principles presented here are widely
applicable with retrieval systems that use frame-based ontologies.

Figure 32 depicts the part of the application’s interface that is revealed when the system
is started. On the center is the current main image. Directly above the main image
are four selection tabs: Image (currently active), Search (explained later), Help (user’s
manual), and About (info about the software). Below the main image are rdfs:labels

Figure 32: Image-page is revealed at the start.

and values of properties image file and photographer, and value of topic, i.e., the image
text (fig. 27, p. 50). On the left side of the main image is a set of thumbnail images.
The system contains thumbnails of each of the ’big’ images. The thumbnails function as
links, and by clicking a certain thumbnail-image it is magnified to be the main image on
the center. The thumbnails on the left side appear in a random order, given the current

33Promoottori in Finnish. The software is currently installed into a kiosk-box, situated in the vestibule
of the Museum of University of Helsinki, Snellmaninkatu 3. The software is examined also in [72, 73].
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search constraints. When the system is started and no constraints are set the user can
quickly browse through all the thumbnails in the system by clicking previous or next

on the bottom left corner. The buttons above the left side thumbnails are familiar to a
user of an Internet browser: Home resets the system in the default starting state, back
arrow takes the system in the previous state, forward arrow takes the system into the
state where it was before pressing the back arrow, and ?-button reveals the help-page
with identical functionality to the help-tab above the main image.

4.3.1 Using Inference in Recommending Photos

On the right side of the main image are the recommendation panes that reveal thumbnails
of the images that are linked to the main image via different sorts of semantic relations34.
Two panes out of five are currently revealed. All the panes have been given hard-coded
priority values and if the priority level of a certain pane is not reached it is not revealed.
The priority level is calculated based on the categories that were linked to the main
image in the annotation stage.

Successors of every top level category of the domain ontology except Performances,

Performers, Creators, and Works (fig. 25, p. 45) were linked to the current main
image but the priorities of only two panes, previous happening and next happening

were met, which is why they are the only ones revealed. The upper one of the current
panes reveals thumbnails of the images connected to the next happening and the lower
pane reveals images connected to the previous happening. The sequences of happenings
are based on the value of property orderBy that was given for all successors of Hap-

penings in Sequence (fig. 23, p. 42). Figure 33 depicts these values as categories.
Let the current main image be linked to a successor of Happenings in Sequence that

1 2

3 4 5 6

7 8 9 10

Figure 33: Values of orderBy as categories.

is denoted by 4. The previous happening pane would in this case reveal thumbnail
images that are linked to 3 or to 3’s successors 7 and 8. The next happening pane
would reveal thumbnails that are linked to 5 that has no successors. If the current main
image was linked to 7, 3, or 1, there would not be the previous happening pane, and if
the main image was linked to 2, 6, or 10, there would not be the next happening pane.

The person relations pane recommends thumbnails based on the structure of Persons

and Groups (fig. 22, p. 40). Persons has properties mother and father that take
successors of Persons as values. Let Persons have two successors A and B, and let
A be directly linked to the main image. If A’s property mother has value B, then the
images that are directly linked to B are revealed as thumbnails. Actually the properties

34Prolog [125] was used as an inference language to reason about the recommendations, i.e., the
recommendation rules were programmed with Prolog.
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that were used in reasoning about the person-relations were not explicitly specified. The
only rule was to use the kinds of properties of Persons and Groups that take successors
of Persons or Groups as values. This is an example where only the rdfs:range and
rdfs:domain of the properties count, and the rdfs:label or the exact ID (p. 26) of the
properties is totally disregarded. This reminds the reader of the fact that the meaning
of an entity depends on relationships to other entities. The only pay-off with rules like
this is the need to take the rules in account when editing the domain ontology35. When
a thumbnail is recommended, the rdfs:label of the property that the recommendation
is based on is also shown, like mother and father.

Place relations are based on the structure of Places (fig. 19, p. 36). If the main
image is linked to an instance of a successor class of Places, then other images that are
linked to the same instance are recommended.

Promotion relations are based on the structure of Promotions (fig. 4.1.8, p. 39).
Thumbnails that are linked to the same promotion as the main image are recommended.

4.3.2 Structure-Based Search

The Search-tab (fig. 34) reveals six facets that correspond to the six top level classes of
the domain ontology, while the left side of the interface remains the same.

Figure 34: Representation of categories.

35A theoretical problem occurs when a property like has got nothing in common with is added.
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The user can find the search menu also by pressing New search above the left thumbnail
images, that resets all the facets into the initial state where no search constraints are
set. The facets can also be reseted one by one by pressing the ’X’ in the upper right
corner of each facet. The rdfs:label’s of the top level classes are the titles of the
facets. Subclasses of the top level classes are also revealed, which gives the user a direct
visualization of two highest levels of the class hierarchy.

The dichotomy to classes and instances proved to be useless from the user’s point of
view, and therefore both classes and instances were given an equal representation in the
UI, and are referred again as categories from here on. If there were no images linked
to a certain category or to its successors the category was not revealed at all. As an
example, category Penultimus is not revealed in figure 4.3.2. It belongs to the ontology
(fig. 22, p. 40) but no images were linked to the category. The revealing and hiding of
the category structure is done by clicking the node on the left side of a category.

Figure 35: Integers indicate the amount of images under a category.

All categories inherit the annotations of their successors, i.e., a union is created of an-
notations of a category and annotations of its successors, as explained in section 3.1.5.
An integer is attached to every category that indicates the total amount of images that
are linked to a category and to its successors. For example, when category Pedell (fig.
4.3.2) is linked to one image the indicating integer of Pedell and all of its predecessors is
increased by 1. There were 7 images linked to successors of Pedell and 1 linked directly
to Pedell, which makes the indicating integer of Pedell to be 7 + 1 = 8. Next, four
examples of structure-based search are given, and compared to text-based search.

Search Example I

The goal in the first example of structure-based search is to retrieve images where can
be seen honorary doctor Linus Torvalds. This can be done in the same fashion as the
corresponding annotation (fig. 30, p. 52). The user chooses the facet with title Persons,

Roles, and Institutions (fig. 34) and selects Essential Roles > Honorary Doctor >

Linus Torvalds. A set of 5 photos where can be seen honorary doctor Linus Torvalds is
retrieved (fig. 36). Photos about honorary doctor Linus Torvalds could be retrieved also
by selecting Groups > Promovends > Doctor Promovends > Honorary Doctor

> Linus Torvalds. The third path Persons > T > Linus Torvalds retrieves photos
about Linus Torvalds disregarding his role36.

36The photos would anyhow be the same because Linus was in role of honorary doctor in every photo
about him that are annotated in the system, which is not the case with many of the other persons.
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Figure 36: Search results of search example I.

Search Example II

The goal in the second example of structure-based search is to retrieve all those images
where can be seen both general garland binder (GGB) and garland at the same time37.
When a user selects a certain category X the search space is constrained so that only
those categories and their predecessors are allowed to be chosen that are linked to the
images that are members of Xa

38. This is visualized in the UI by changing the color of
the categories that cannot be chosen into gray. In terms of set theory, the gray categories
contain only annotations that are members of set G = >a\Xa, where >a denotes the set
of all images annotated in the system. This way the user does not have to browse those
branches of the category tree where nothing can be found, given the constraints the user
has already set.

Figure 37 depicts the retrieval situation in four steps. The user sees a set of categories

Figure 37: Four steps of the retrieval process: 1) top left, 2) top right, 3) bottom left,
and 4) bottom right.

and selects GGB in the top left corner. Now all the images that are members of set
GGBa are revealed as thumbnails disregarding their membership to Garlanda. The

37The goal was identical with text-based paradigm in section 2.1.2.
38As in section 3.1.5, Xa stands for the set of all images that were linked to category X or to X’s

predecessors in the annotation.
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selection affects other categories, and the Physical Objects facet on the top right
corner is constrained so that the categories that are fuzzified with gray color cannot
be selected. The user selects Garland in the bottom left corner, and the selection is
reflected in the bottom right corner. Thumbnails of the 11 images where can be seen
both garland and general garland binder are revealed (figure 38), and all of them are
members of set GGBa ∩ Garlanda.

Figure 38: Search results of search example II.

Search Example III

The recall and precision (sect. 2.1.2) of structure-based versus text-based search is
analyzed in the following. The structure-based search is executed with the exhibition
software and the text-based search with Protégé-2000 (sect. 4.1.2). The text-based
queries are compared with the topic-field (fig. 27, p. 50) that textually describes the
images. The text-based search was executed using Finnish search terms39 but the results
would have been almost the same even if the texts were translated into English. The
integers indicate the amount of retrieved images on the below table. With text-based
search AND in the table corresponds to logical ∧, and with structure-based search it
corresponds to ∩. OR corresponds to logical ∨ and ∪ respectively.

Query terms Structure-based Text-based

Garland 27 124
Garland binding material 5 0
Garland binding happening 23 23
GGB 69 42
GGB AND Garland 11 42
GGB OR Garland 85 124

In the first query Garland the precision of text-based search was very poor. The irrelevant
images within the 124 images are those where cannot be seen garland but they are about

39The categories that were used in the comparison and the corresponding search terms in Finnish:
Physical Objects > Flags, Marks, and Badges, Symbols of Academic Rank > Garland =
Seppele. Persons, Roles, and Institutions > Essential Roles > General Garland Binder =
Yleinen seppeleensitojatar. Physical Objects > Assorted Objects > Garland Binding Material

= seppeleensitomismateriaali. Happenings > Happenings in Sequence > Garland Binding Day

> Garland Binding Happening = seppeleensitojaiset.
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1) election of GGB, 2) parents of GGB, 3) previous general garland binders, 4) triumph
garland binders, 5) the companions of the master promovends who are called garland
binding men and garland binding women, and 6) garland binding day when there is
mainly only garland binding material visible. The recall of the text-based search was
good, but finding the wanted ones by browsing through 124 images would take relatively
much more time than with structure-based search.

If the retriever’s goal was to see all kinds of garlands, including the partly unfinished
ones, the recall of text-based search would have been even better than with structure-
based search. This is because there is an additional category Garland Binding Ma-

terial in the ontology for describing unfinished garlands and the material that is used
to bind the garlands. If the user had unnoticed this category the unfinished garlands
might have been totally unseen. Then again, with text-based search the query Garland

binding material would not retrieve images at all. To find the unfinished garlands with
text-based search the user should know that they can be seen during the garland bind-
ing happening. The query Garland binding happening retrieved 23 photos with both
paradigms, but only the 5 clearest photos about the garland binding material within the
23 photos could be retrieved with structure-based search by selecting Garland Binding

Material. However, text-based query Leaf OR Branch OR Laurel retrieved 17 images
of which half were totally irrelevant but some contained garlands that could not be re-
trieved with structure-based search. The reason for this is that those images that were
linked to Garland, to Garland binding material, or to their successors depict the
garlands and materials more clearly than the other annotated images.

The query General garland binder retrieved more images with structure-based search
than with text-based search. The precision was perfect with both paradigms but the
recall of text-based search was worse. This is because in Finnish the inflectional stemming
of ’general garland binder’ changes quite much when used with expressions such as GGB’s,
to GGB, from GGB, etc. The retrievers should use different word forms with text-based
search to achieve the same recall, but then the precision could get lower.

With text-based search the query GGB AND Garland retrieved exactly the same 42 images
than with query GGB, which naturally indicates a low precision. This is because the
character string ”garland” is already included in ”General garland binder”: this is a
classical situation where the advantages of structure-based search are clear. The recall
was almost identical with both paradigms, but the precision of structure-based search
was again 100%. However, there were 2 images in the system where the GGB can be
seen with an unfinished garland in her hand, and these images do not belong to the
set of 11 images that were retrieved with structure-based search. These two images
could however be retrieved with structure-based search by selecting GGB AND Garland

binding material.

The query GGB OR Garland retrieved the same 124 images with text-based search than
with query Garland. The query GGB OR Garland could not be directly executed with
the exhibition software, and so the union GGBa ∪ Garlanda was executed manually
by two separate structure-based queries: GGB that retrieved 69 images and Garland that
retrieved 27 images. Some of the retrieved images were the same with both queries, and
the total amount of different images was 85.
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Search Example IV

Another example of comparing structure-based and text-based search is given in course
of objectiveness. This time the retriever’s goal is to find images about processions of
different faculties as depicted on the below table40:

Query terms Structure-based Text-based

Procession AND Political Science (valtio) 10 10
Procession AND Law (oikeus) 3 3
Procession AND Veterinary Medicine (eläin) 1 1
Procession AND Medicine (lääke) 9 10
Procession AND Agriculture (maatalous) 3 4
Procession AND Philosophy (filosofi) 95 56

The first three queries retrieved exactly the same images with both text-based and
structure-based search. The recall and precision were also 100% with both paradigms
because the search terms did not contain one another and the search terms were not
used together in other contexts. The text-based query Procession AND Medicine how-
ever retrieved also one image about procession of faculty of Veterinary Medicine because
character string ”Medicine” is included in ”Veterinary Medicine”. The structure-based
query Procession AND Agriculture retrieved one image less than the text-based query
because the annotator had not linked Faculty of Agriculture to the image; a flaw that
was noticed during this test. The text-based query Procession AND Philosophy then
again retrieved much less images than the corresponding structure-based search. This
is because the query terms do not appear in all the description fields of images that are
about processions of the faculty of Philosophy. The results are further analyzed in the
next section.

40The categories and corresponding search terms in Finnish: Happenings > Processions = kulkue.
The faculties can be found in the end of path Persons, Roles, and Institutions > Institutions >

Faculties > Promotion Faculties >*. Finnish search terms for the faculties are inside the brackets
in the table.
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5 Conclusions

This section analyzes the fitness of ontology-based approach to image annotation and
retrieval in scope of the case example and in domains of the similar size. The ontology-
based approach is compared to the text-based approach in building a domain domain
model, annotating and retrieving images, and reusing the annotations. The extensibility
of the ontology-based and text-based approaches are analyzed in scope of the Internet.

Building a Domain Model

In light of the case example, formal frame-based ontology languages with a variety of
supporting tools provide an efficient way to build and use a domain model. Disregarding
if the domain is an ontology or a thesaurus, the new framework of Semantic Web lan-
guages and tools are more efficient in the task than traditional programming languages;
naturally, a domain model cannot be built with natural language, but a domain can be
described with natural language. Nowadays there are not the kinds of globally agreed
ontologies that could be easily used as the basis of creating domain-specific ontologies
such as the Promotion ontology, and so the ontologization has to be started from a
scratch, but as the case example proves on it’s own behalf, this is not a great problem
and can be done efficiently with the aid of domain experts and the ontologist.

Annotation

With traditional text-based annotation the annotator has to have an explicit thesaurus
to ensure that the right words are used. If the relations of the words in the thesaurus are
formalized, the thesaurus would be moving towards a formal ontology. With structure-
based annotation the ontology is the thesaurus, and ontologies facilitate guiding the
annotators. Given a domain ontology, an annotation schema can be easily built with
which the concepts that are used in the annotation can be constrained so that the
annotator’s job is on better grounds. Complexity of the annotation schema can increase
along the complexity of the ontology, but the annotation schema can still be intuitively
used by annotators with no domain knowledge. For instance, it was very easy to build and
use the annotation schema of the case example, and if the annotator and the ontologist
would not have been the same person, it would have been trivial to create a schema
where are six separate for each of the six top level classes of the Promotion ontology.

When new data is included into the ontology during the annotation (e.g. persons and
places) it can be easily reused, when in contrast text-based annotations have to be created
manually from the beginning until the end, no matter how many annotated items there
are. Text-based annotation can however be applied to any domain simply by inserting the
annotation text into one annotation field, when in contrast ontology-based annotation
requires an ontology that is designed for the subject domain. Also, an ontology-based
annotation schema has to be created according to the used ontology (or ontologies), and
if the design principles of the ontology are modified, the annotation schema has to be
modified accordingly: handling of the changes in ontologies is a great task that is yet
undone.
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Retrieval

The Promotor retrieval system provides better means than text-based search to formulate
the information need, formulate the query, and to understand the result set. With
structure-based search the actual retrieval includes only finding the search constraints,
categories that really describe what is in the images, after which the search is done and
the user can concentrate on the actual image data, which naturally is the goal of an
average user of a photograph exhibition system. The inheritance of annotations from
the bottom of the hierarchy up to the top of it, and the thumbnail images assure a
rapid functionality. When the search results are depicted on the same window than the
categories the iterative query formulation gets easier. The feedback is instant and users
understand the size and the contents of the search space.

In general, the set of 628 images is so small that the recall is close to 100% with both
text-based and structure-based search with many queries, assuming that the retriever is
familiar with the domain. The precision is usually better with structure-based search but
it naturally depends on how users can find the search constraints through the category
hierarchy. With a small subject domain the hierarchy is clear and the recommenda-
tion system also guides the retrieval. If the system used only text-based search, ceteris
paribus, ignorant users would first have to learn about the domain by reading the image-
texts or other descriptions, and then type the queries accordingly. Typing a short query
like Garland takes less time than finding the corresponding category, but an imprecise
query formulation leads to low precision. With low precision the retriever has to use time
in browsing irrelevant results, or formulate a more precise query iteratively by viewing
the images and image texts of the result set. It is certainly easier, faster, and more enter-
taining for an ignorant user to start from high-level abstractions by selecting categories
with a mouse from a set of possible choices and following interesting links that really
lead to the wanted data.

The user has possibly no exact goal in mind, when the category hierarchy and the se-
mantic recommendations can also teach the user about the domain more effectively than
text-based search. Again, a textual thesaurus could be revealed to the user, but in this
case it would be intentional to allow the user to choose the search constraints directly
from the thesaurus, which was done with the ontology in the case example. Field-based
approach could function more efficiently than generic text-based search, but then the
annotations would have to be created accordingly. Implementation of the recommen-
dation system would also get a lot harder, and as the classical problems of text-based
search prove, the precision of the recommendations would be far from perfect: explicit
thesauruses or manually created hyperlinks would have to be used, when in contrast
the RDFS ontology with Prolog rules served successfully as the thesaurus and the link-
structure in the case example.

The reason to the outranking precision of structure-based search and the recommen-
dation system is the fact that the actual annotation process captures the annotators’
intentions implicitly, which is not the case when text-based retrieval is applied to text-
based annotations. When the same ontology that is used in the annotation is used in
the retrieval, intersection, union, and difference can be deterministically applied to sets
of categories, directly or via different relations. These were used in two ways in the
case example, automatically as embedded functionality, and as retriever’s selections. As
embedded functionality, union was used in inheritance of the annotations, and difference
and intersection in visualizing and constraining the search space. The retriever could
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constrain the search space only with intersection, and it is notable that difference and
union could have been used also as retriever’s selections in the structure-based search. A
retriever could benefit a lot by selecting for example all garlands, but not those garlands
that appear during the garland binding day. Union is then again less useful as retriever’s
selection than intersection and difference: the same items that can be retrieved by se-
lecting the union of two categories can be retrieved by selecting one category at a time.

Formal ontologies facilitate using different types of data directly as search constraints. In
the case example thumbnail-images were used as hyperlinks, but also videos and sound
files could have been used in a similar fashion: a retriever can choose between different
types of music based on very short sound samples. Representation of information as
it really is provides logically easy means for humans to retrieve it. As a conclusion,
ontology-based approach seems to be applicable to relatively small and closed domains
in image annotation and retrieval better than text-based or field-based approaches, and
building a domain model is more effective with standard frame-based ontology languages
and supporting tools than with traditional programming languages.

When the Domain is the Internet

The size of the domain crucially affects the design principles of ontologies and annotation
and retrieval systems. When the domain gets wider, it can be assumed that the same
bottlenecks and advantages can be distinguished in a larger scale with both text-based
and structure-based paradigms. When the domain is the whole Internet, structure-based
and text-based methods have to be strongly combined to reach better results than earlier.
In the following, traditional text-based retrieval systems are compared to today’s largest
structure-based on-line annotation and retrieval system Open Directory Project ODP41.

Extensive studies [99, 35] show that users who know exactly what they want can reach
good results with retrieval systems that have only one text-based search field. To date,
Internet search engines such as Google [55] and Altavista [2] are a lot more effective
than ODP in finding information in general. This is not a surprise: Google alone has
over 4 billion indexed Web pages and ODP has only about 4.5 million Web sites, even
though there can be many separate pages on one Web site. However, as the size of ODP
grows, also the usage can grow simultaneously. The precision of ODP is a lot better
than that of Google because of the same reasons than in the case example: the precision
of structure-based search that is based on manual annotations does not get lower as the
amount of annotated items grows. The structure-based search is more on the categories
and not on the content, because once the categories have been found, the intended
content is also found. With small domains the categories themselves can be found in a
normal structure-based fashion, but with large domains text-based search helps to find
the categories by their titles and descriptions: a textual query is typed, after which a set
of categories is represented to the user. The titles of the categories that are represented
to the user contain the query string, and/or the sites that are placed under the categories
that are represented to the user contain the query string. By selecting a category the
search space is effectively reduced based on the predecessor-successor relationships of
the selected category. With ODP one can search either only categories, or sites that are
constrained by the selected category.

41ODP is explained briefly in appendix C. The directories of ODP can be taken as a category tree
that is used in annotation and retrieval of Web sites.
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Ontologies like ODP can be used to link Web sites to general domains, but it seems
to be rather a heavy task for an average site owner to annotate all images and pages
separately with today’s tools. This indicates that text-based methods accommodated
with semantic relevance feedback [105] that is based on retrievers’ average actions can
be applied more successfully to image retrieval in the near future than to use explicit
ontologies in the annotation. If only ontologies were used without any relevance feedback,
the best precision in image retrieval would be reached by annotating the Web sites
where the images are, and the images separately. If the images were not annotated
separately, relevance feedback would have to be used again. However, creation of the
relevance feedback system would be on far better grounds even if only the Web sites were
annotated. One clear advantage of the text-based paradigm is the fact that there is not a
need to build explicit domain ontologies, that is a prerequisite for manual structure-based
annotation and retrieval.

With the text-based paradigm there is not necessarily a need to go through an explicit
annotation process. One can write text on a Web page and put an image there that
can be possibly found with text-based search. Text can be inserted also into a metadata
field of a Web page or an image. Plain-text annotations can be reused simply by copying
the text to another place, but structure-based annotations can be reused only with the
ontology that was used in the annotation, and with a system that is able to interpret
the ontology. Then again, if the ontology had been built using globally agreed categories
and languages and the ontologies could be placed in the Internet ’permanently’, that is
the goal, the annotations would always be globally valid.

An ontology that covers the whole Internet should relate all words of a natural language
like English, and ontologization of a language in a way that it can be used efficiently in
annotation and retrieval is a huge, if not an impossible task. Efforts in the past indicate
that a closed community cannot build an ontology that covers the whole World effectively.
An open ontology such as ODP then again benefits from volunteered editors, and it seems
that in general people are willing to participate in ontologization efforts. However, the
editors’ subjectivity can also cause problems. As ODP-like ontologies evolve, it is highly
probable that hundreds of millions of Web users do annotate their sites in order to get
them found by a large audience, and creation of recommendation systems is on better
grounds when there is a reliable category hierarchy to work with.

When the domain grows, also the pay-offs in the category structure get worse. ODP and
the case example prove that it is better to use multi-instantiation, i.e., set the annotated
items below more than one category than to use only multiple inheritance of categories
and set the annotated items below only one category. This enables using intersection,
union, and difference effectively to constrain the search space, and the ontologization is
easier when most of the categories do not have to be enforced into a predecessor-successor
relationship. When the amount of independent top level categories grows, the amount of
unsound philosophical resolutions diminishes, and even if there were thousands of top-
level categories, these too could be placed into a well-designed hierarchy. For example,
there can be thousands of domain ontologies such as the Promotion ontology, that can
all be placed under other higher-level categories. Naturally, changing for example ODP
into a multi-faceted search system, such as the Promotor exhibition system is, would
require fundamental changes in ODP.
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Formal ontologies have come to stay permanently with us as a highly effective language
of abstraction with which humans and computers can share information across domain
boundaries. The benefits of ontologies are clear, and even if there would exist a ’perfect’
linguistic system that could automatically annotate data based on long textual descrip-
tions, it would not solve the need for structure-based constraining of the search space:
circle would still have many meanings as well as other words, and building of this kind
of system requires ontologies.

The ideal goal is to have a common-sense information retrieval and annotation system
that all Web users can use efficiently, that can be applied to all domains, that accom-
modates relevance feedback and content-based analysis, and handles changes in time.
While we are slowly moving towards this,

we ontologize the world, and in return its sensible form is excavated, furrowed
by categories that work at it and relate it from within, and spin forth the
Web of significations that christen it, determine it, and fix it in the universe
of discourse [50].
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[13] Sean Bechhofer, Carole Goble, Ian Horrocks: DAML+OIL is not Enough, 2001.
http://www.semanticweb.org/SWWS/program/full/paper40.pdf

[14] Walter Benjamin: Taideteos teknisen uusinnettavuutensa aikakaudella in ”Messi-
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In Proceedings of the twelfth Workshop on Knowledge Acquisition, Modeling and
Management (KAW99), Banff, Alberta, Canada, October 16-21, 1999.

[57] Nicola Guarino: Formal Ontology: Conceptual Analysis and Knowledge Representa-
tion. International Journal of Human-Computer Studies, vol. 43, nro 2, p. 625-640,
1995.

[58] Nicola Guarino: Formal Ontology in Information Systems. IOS Press, Amsterdam,
1998.

[59] Nicola Guarino: Review of Knowledge Representation: Logical, Philosophical, and
Computational Foundations by John Sowa. AI Magazine, vol. 22, nro. 3, p. 123-
124, 2001. http://www.aaai.org/Library/Magazine/Vol22/22-03/Papers/AIMag22-
03-019.pdf

[60] R. V. Guha: Context Dependence of Representation in Cyc. MCC Technical Report,
p. 66-93, 1993.

[61] James R. Groff, Paul N. Weinberg: SQL: The Complete Reference. McGraw-Hill,
Berkeley, California, 1999.

[62] T. R. Gruber: Towards Principles for the design of Ontologies used for Knowledge
Sharing. International Journal of Human-Computer Studies, nro. 43, p. 907-928,
1995.

[63] Thomas R. Gruber: A Translation Approach to Portable Ontology Specifications.
Knowledge Acquisition, nro. 5, p. 199-220, 1993.
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23. päivänä 1997, Oy Edita Ab, Helsinki, 1997.

[95] Ora Lassila, R. Swick (editors): Resource Description Framework (RDF):
Model and syntax specification. Technical report, 1999. W3C Recommendation.
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

[96] Ora Lassila and Deborah McGuinness: The Role of Frame-Based Representation on
the Semantic Web. Knowledge Systems Laboratory Report. KSL-01-02, Stanford
University, 2001.

[97] V. Lavrenko, R. Manmatha, J. Leon: A Model for Learning the Semantics of Pic-
tures. Preproceedings of NIPS 2003.
http://books.nips.cc/papers/files/nips16/NIPS2003 AA70.pdf

[98] LCSH, Library of Congress Subject Headings:
http://www.carl.org/tlc/crs/shed0014.htm

[99] K.-P. Lee, K. Swearingen, K. Li, M. Hearst. Faceted metadata for image search and
browsing. Proceedings of CHI 2003, April 5-10, Fort Lauderdale, USA. Association
for Computing Machinery (ACM), USA, 2003.

[100] D. B. Lenat, R. V. Guha: Building large knowledge-based systems. Representation
and inference in the Cyc project, Addison-Wesley, Reading, Massachusetts, 1990.

[101] Gunther Lenz: .NET - A Complete Development Cycle, Addison-Wesley, 2003.

[102] D. Lin: Using collocation statistics in information extraction. Proceedings of the
Seventh Message Understanding Conference (MUC-7), San Francisco, CA, 1998.

73



[103] Hugo Liu, Henry Lieberman. Robust photo retrieval using world semantics. Pro-
ceedings of the 3rd International Conference on Language Resources And Evaluation
Workshop: Creating and Using Semantics for Information Retrieval and Filtering:
State-of-the-art and Future Research (LREC2002), pp. 15-20, Las Palmas, Canary
Islands, 2002.

[104] Jacob Lorhard: Theatrum Philosophicum, 1613.

[105] Ye Lu, Chunhui Hu, Xingquan Zhu, HongJiang Zhang, Qiang Yang: A Unified
Framework for Semantics and Feature Based Relevance Feedback in Image Retrieval
Systems. Proceedings of ACM MM 2000, p. 31- 38, 2000.

[106] Lycos search: http://sjc-search.sjc.lycos.com/

[107] S. McIlraith, T. Son, H. Zeng: Semantic web services. IEEE Intelligent Systems,
p. 46-53, March/April 2001.

[108] Deborah L. McGuinness: Description Logics Emerge from Ivory Towers. Stanford
Knowledge Systems Laboratory Technical Report KSL-01-08 2001. In the Proceed-
ings of the International Workshop on Description Logics. Stanford, CA, August
2001.

[109] Tiina Metso: Tapaillaan. Akateemisia juhlia ja tapoja. Yliopistopaino, 1998.

[110] Ray Monk: Russell; Mathematics: Dreams and Nightmares. Lennart Sane Agency
AB, 1997.

[111] Netscape search: http://search.netscape.com

[112] Ilkka Niiniluoto: Johdatus Tieteenfilosofiaan. Kustannusosakeyhtiö Otavan paino-
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Appendix A: Content-Based Image Retrieval CBIR

While the text-based, field-based, and structure-based image retrieval paradigms (sect.
2) analyze the metadata that is created by human annotators, the content-based image
retrieval (CBIR) paradigm analyzes the image data itself, i.e., the physical elements of
images that were defined in section 1.2. Figure 39 depicts a hierarchy of Image under-

standing and recognition. The Computerized part is explained in this appendix,
and the Not computerized part is explained in appendix B.

Image understanding and recognition

Computer vision Semiotics Cognitive science

Machine vision

Not computerized

EstheticsNaive CBIR 

Computerized/CBIR 

Figure 39: Some categories that describe fields of image understanding and recognition.

Naive CBIR

Naive CBIR techniques collect different kinds of statistics from digital images such as
color and edge distribution. In other words, different filters are applied to images and the
filters’ output is analyzed to find the kinds of regularities that can be used in categorizing
images. Nowadays for example search engines AltaVista, Yahoo and several others [23]
accommodate naive CBIR-techniques in image retrieval.

This branch of image understanding and recognition is called here naive because the
’understanding’ of the approach is very raw: two images are similar if they have the
same relative brightness or amount of the same color. However, these techniques can be
used as components with other more sophisticated techniques which are discussed in the
following.

Computer vision

Computer vision includes all the computerized methods and theories that aim to create
applications that can automatically distinguish a somewhat deeper meaning of images’
physical elements than naive CBIR. There can be seen a similar kind of relation between
standardized machine vision techniques and yet unstandardized computer vision tech-
niques than between ’normal’ applications and Artificial Intelligence applications: when
a new computer vision technique becomes standardized, i.e., it is sure that it works well,
then it can be called a machine vision technique.
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Computer vision aims to do automatically what can be done manually with tools like
Imarea [77], a prototypical editor that can be used to create metadata that connects
images’ physical elements to abstract elements. The user can specify any coordinates of
2D images’ with the basic image processing tools: quadrangle, polygon, and freehand-
tool. The specified coordinates can then be described with the aid of different metadata
schemas: Dublin core [28], FOAF [49], and WordNet [157]. The created metadata can
be saved either as a separate file or into the metadata field of JPEG and PNG image
formats in a reusable XML-based format (sect. 3.2.2) that follows the SVG-standard
[146].

Figure 40 depicts a view of Imarea’s user interface. As can be seen in the category on

Figure 40: A view of Image Area Annotator’s user interface.

the left side of the figure, an image with file name ’Crossing.jpg’ has two annotations:
coordinates of the two light posts have been specified with rectangles (svg:rect), and the
rectangles have been linked to Dublin Core’s attribute Subject with textual values ’Light
post 1’ and ’Light post 2’.

Machine vision

Machine vision is widely used in the industry. A simple example of machine vision is
a pipeline-application where a robot identifies ’bad’ oranges from within the ones that
are good enough for selling. The robot is equipped with a camera, a model of an average
’good’ orange, a model of an average ’bad’ orange, and a comparison algorithm. The
models42 are taught to the robot with a machine learning application by providing a

42Several techniques can be used in the model construction such as Bayes and neural networks, fuzzy
logic, self-organizing maps, and combinations of these. However, hard-coded sensors can be applied
successfully in recognizing certain types of objects in known conditions without using modern machine
learning techniques. In these cases the ’learning’ is done by adjusting the sensors.
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sufficient training set; a set of photos about good and bad oranges. When the oranges
are moving on the pipeline the robot takes a photo of every single orange. The photo
is filtered into a form that can be used by the comparison algorithm to decide whether
to accept an orange or not. The known and unchanging conditions in the pipeline
environment enable a successful filtering and comparison in real-time. There is always a
fixed amount of light, a fixed posing angle, a fixed size of an orange relative to the size
of the whole photograph, and it is naturally know what is being recognized.

Towards integrating formal ontologies with CBIR

The problems that are solved by the stable conditions in machine vision are the funda-
mental problems in other fields of computer vision [6, 162, 26]. Take an arbitrary photo
about a human as an example. There can be different lighting conditions, different pos-
ing angles, and different sizes of the subject relative to the size of the whole photo. The
filtering should dispose irrelevant information from the photos and it is difficult to de-
cide which part of the information is relevant or irrelevant because of the heterogeneous
conditions. In the general case the problems of lighting, size, and pose cannot be cleanly
separated. Object o1 under lighting conditions l1 may look exactly like object o2 under
lighting conditions l2. With an arbitrary image there is no way to decide even in principle
if the object that is the subject of recognition is o1 or o2. As an example of complexity,
an object can have n possible posing angles, m possible sizes, and p possible lighting
conditions. The size of a model containing all this information would be n · m · p, when
the size of a model that could recognize the same object in a pipeline environment would
be 1.

Computer vision articles give often a very optimistic idea about some methods used in
practice. Applications succeed to work sufficiently and even well in constrained envi-
ronments or domains such as in corridors of a house and in face recognition, but once
they step out of the familiar environment the recognition abilities face an insuperable
wall. Applications can recognize only what is included in their model that is learned by
analyzing the training set photos. If an application can recognize a cow, it does not help
in recognizing a human. If both cows and humans were to be recognized there should be
two models, one for cows and one for humans. This indicates that the size of a model
that could recognize more than one type of objects would grow linearly relative to the
amount of objects that can be successfully recognized.

The fundamental goal of computer vision is to create a system that can use something
that it has already learned to learn new things more easily. The eventual solution to
the learning problem lies in combining CBIR techniques with well-formed information
structures, formal ontologies. Interpretation of any image is context dependent and it
is clear that understanding the relations of objects facilitates recognition. Recently,
semantically oriented techniques have been used successfully with CBIR techniques [10,
97, 103]. For example in [10] the metadata that surround an image, such as text on a
Web page where an image situated, is used as a starting point to recognize the image’s
physical elements. A cluster model similar to the category tree is used to reason that
a wave belongs to the sea and the sea belongs to the landscape for example. Semantic
methods [70] were used in constructing the cluster model.

The benefits of the ontology-based approach are explained with a greatly simplified
example. Let there be n objects: o1, o2, . . . , on. Let O denote the set of all these objects:
O = {o1, o2, . . . , on}. The model that recognizes o1 is denoted as m1, the model that

80



recognizes o2 as m2, and so forth, the model that recognizes all objects in O is denoted
as M = {m1, m2, . . . , mn}. Let the size of each individual model mk(k ∈ 1, . . . , n) be 1.
Therefore the size of M is n, and the size of M grows linearly relative to the amount of
objects that can be recognized.

The goal is to identify and determine what is common to all members of M and O so
that the things that have already been learned would facilitate recognizing new things of
the same type. An intersection is performed between all members of M, which is denoted
by M∩ = ∩n

k=1mk. M∩ contains all that is common to all members of M. When M∩

has been calculated, M∩ can be dispatched from every member of M because there is
no need to multiply data. This is done by calculating the difference between all members
of M and M∩: M\M∩ = {m1, m2, . . . , mn}\M∩ = {m1\M∩, m2\M∩, . . . , mn\M∩}.
The size of M\M∩ together with M∩ is smaller than M if two or more members of
Mhaveanythingincommon: size(M\M∩) + size(M∩) < size(M).

As a concrete example, let M consist of horse, zebra, and mule, i.e., model M is capable
of recognizing these three animals: M = {horse, zebra, mule}, and size(M) = 3. The
intersection M∩ = horse∩zebra∩mule contains all that is common to all members of M:
they all walk on four legs, all have approximately the same kind of relative proportions
of body parts, and all have a mane, ears, eyes, and tail amongst other features. Members
of the difference {horse, zebra, mule}\M∩ then again contain only the special features
of horses, zebras, and mules such as the size factor, special form of the mane, ears, and
tail, and possible colors of the coat. If the size of the original model M was 3, and
the size of M∩ is 0.5, then the size of the new model M\M∩ together with M∩ is
size(M) − n · size(M∩) + size(M∩) = 3 − 3 · 0.5 + 0.5 = 2. The greater is the amount
of items that have similarities, the greater is the relative benefit because all things are
related up some degree.

Automatic clustering takes place at this point. The actual clustering of the models that
have been created is a great problem because the model frameworks that are used today
are not efficiently structured, and so it cannot be said just where in a model is the
part that recognizes a certain thing. If the models were well-structured, the clustering
problem could be eventually reduced into matching sequences or sets of integers, in order
to form a hierarchy of these sets. If the models are not semantically oriented in any way,
they can be considered as sets of large integers without no indication of the reason why
the integers are there as they are, and a successful comparison of two sets would seem
to be quite impossible.

The recognition of the members of O walks hand in hand with the clustering. Formal
ontologies are inevitably a promising aid to this problem: understanding the relations of
members of O helps understanding the relations of members of M and vice versa.
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Appendix B: General Concepts of Image Analysis

This appendix briefly discusses the Not computerized (fig. 39 on p. 78) part of image
understanding and recognition, while appendix A explained the Computerized part
(fig. 39 on p. 78). The source of this appendix is [46] if other sources are not explicitly
mentioned.

A set of terms is used in analyzing images and art in general. The specification of these
terms is vague and they describe more or less the things. Some of these are explained
with physical and abstract elements, and their resemblances that were defined in section
1.2. The things that are not a part of an image but have affect on the interpretation, such
as artists’ intentions and history, can be taken also as abstract or physical elements. The
table below reveals the terms that are explained in the following. The abstract elements
are divided into direct and indirect resemblances of physical elements in the table.

Physical Elements Direct Resemblances Indirect Resemblances

Icon & Index Icon Index
Factual Content Truth content Truth content
Sign Signification Signification
Denotation Denotation Connotation
Punctum & Studium Punctum & Studium Punctum & Studium

Icon − Index

The clearest examples of icons are abstract universal forms such as ’square’ or ’triangle’
that are in iconic resemblance (IR). IR can be founded on Aristotle’s correspondence
theory of truth [112] which states that truth is a kind of correlation between belief and
reality; a sentence is true if it corresponds the reality. IR is not crisp as in mathematical
logic, but it is always fuzzy and subjective. This is realized with the following test that
measures the degree of IR.

An arbitrary image is denoted by i. A million people43 are asked ”what is the single
strongest form or idea in i?” The average answer is a. Then another million people
are given a task to draw a. The closer i is to an average drawing d, the stronger is the
IR of i. This way the test of IR can be seen as a triple (i, a, d), where the similarity
of i and d is being measured. The IR would probably be quite strong if i would be
either the left or the right side of figure 41, but if i would be the whole figure 41, the
IR would not be as strong. The direct resemblances ’circle’ and ’square’ would mediate
together and resemble something else, whereby i would probably not be very close to d

Figure 41: ?

43Or an adequate amount of people in order to make the results of the test objective.
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because there is not a single right word, phrase or concept that describes the indirect
resemblances of the whole figure 41. In this case i could resemble ’circle and square’,
’geometrical objects’, or ’two forms’ for example. The same pattern can be distinguished
with myriads of things like alphabetic letters: one letter alone can resemble itself but a
collection of letters forms other concepts, words.

In the above test the average answer a was in form of text, but the answer could also be
in form of sound or anything else that can be percepted. Also i and d could be of any
perceptual type, other than a, because if a is of the same type than i and d, the test
of IR can get blurred. The test can be applied also in measuring the similarity of two
or more things of different perceptual types. As an example, word ’pipe’ is the average
answer a when i is an image about a pipe. Image of pipe and a real physical smoking
pipe are in iconic resemblance because the average answer a is the same for both of them.

Unlike icon, index does not have a strong iconic resemblance. Index resembles primarily
something else than its own visual form. Icon-index relationships of the images on figure
42 and are analyzed in the following. The physical elements resembling smoke on the

Smoke Fire

Fire Smoke

Direct resemblance

Indirect resemblance Indirect resemblance

Direct resemblance

Figure 42: Two separate photographs.

left side of figure 42 can be interpreted as index of fire because smoke resembles fire
indirectly. Fire can be considered as index of smoke on the right side of figure 42 but not
as strongly as smoke is an index of fire: smoke could be easily interpreted also as fog or
cloud for example. When fire and smoke clearly appear in the same photo, a mapping
can be made between these two direct resemblances.

The general usage of icon and index is tied to physical elements. If abstract relations
of things are described with icon and index outside of any physical elements, two more
terms have to be defined: abstract icon and abstract index. In the left of figure 42 smoke
is an index of an abstract icon, fire, and in the right side fire would be an index of an
abstract icon, smoke. To avoid these complex terms we can as well use abstract elements
that are derived from direct and indirect resemblances of physical elements.

The general usage of icon and index can also be specified with a simple logical predicate
resembles(b, c), meaning ’physical element b resembles abstract element c’. If the predi-
cate is extended so that b and c could be both physical and abstract elements, it could
be used also to describe relations of pure abstract ontological concepts instead of just
linking images’ physical elements to abstract concepts.
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Factual Content − Truth Content

Walter Benjamin (1892-1940) used term factual content (translation from German) [15]
for the physical elements of a work of art and truth content to describe the abstract
resemblances of the factual content. When truth content is a direct resemblance,
then the factual content is in iconic resemblance. When truth content is an indirect
resemblance, it can be derived from the factual content with a chain or network of two
or more resemblances. Benjamin also discussed the effect of the environment to the
interpretation of a work of art along the time [14]: the truth content can change along
the change of time and place while the factual content remains relatively the same.

Sign − Signification

Signs can be percepted in audial, visual, or in any other sensible form. These signs
have meanings, significations. In images signs are physical elements and significations
are abstract elements that are derived from the direct and indirect resemblances of the
physical elements.

Denotation − Connotation

Denotation and connotation are not constrained only to the analysis but fit describing
also the photographing process (creation of art) where denotation stands for ’what is
photographed’ and connotation for ’how was it photographed’ [46, 11]. In the analysis
denotation stands for the physical elements that a piece of art consists of, and their
direct resemblances. When physical element p is denotative, p is in iconic resemblance.
Connotative physical elements then again resemble something else than their own visual
form, like smoke resembles fire. The meaning of the connotative physical elements can
be eventually derived from their resemblances and how these act with the resemblances
of other physical elements.

Punctum − Studium

Roland Barthes (1915-1980) defined punctum [12] as something that clearly comes out of
the image, the strongest emotion, Firstness (sect. 3.1.4). Studium is the objective study
that explains how and where the punctum is derived from. Barthes maintained that ”It
is impossible to set a deterministic rule to specify the relationships that connect punctum
to studium in general,” which is true because subjective opinions of individual humans
cannot be deterministically known or anticipated, at least up to a degree of 100%. The
average punctums and studiums can however be measured by asking these from many
people, as was done with the test of iconic resemblance. As a physical element punctum
denotes some area of an image, i.e., the whole image or a proper subset of the image,
when studium would explain its direct and indirect resemblances. As an abstract element
punctum is derived from the physical elements directly or via a path of resemblances.
If punctum is a direct resemblance, then studium would explain that the punctum is in
iconic resemblance. If punctum is an indirect resemblance, then studium would explain
the paths of resemblances between the physical elements and the punctum.
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Appendix C: Examples of Ontologies

This appendix gives examples of well known philosophical and formal ontologies. The
examples are given in a timely order based on the appearance of the original sources.
The category tree examples are in accordance with the definition of section 3.1 with
one exception that is examined and then represented as a plain category tree structure.
The absurd type ⊥ is left undrawn in most of the cases because of representational
reasons. Three of today’s largest existing formal ontologies, the Open Directory Project,
WordNet, and CYC are also briefly reviewed.

The table below connects some of the top level categories of the category tree examples,
i.e., tells which categories in different trees have approximately the same meaning.

Plato Porphyry Brentano CYC Sowa

> Substance Being Thing >
Physical Material Substance ? Physical

Abstract Immaterial Accident ? Abstract

Plato’s Categories

The first example reveals Plato’s (427-347 BC) categories according to [122]. Plato
divided things generally to two categories, to the Abstract world as the ultimate truth,
and to the Physical world as merely an imperfect implementation of the abstract world.
In fact, Plato gave the lowest value to Images, because images (such as statues and
paintings) are only reflections of the Physical world. Therefore, Image and Physical

objects could have been set directly below > as well. Plato named the relation between
Images and the Physical world as mimesis, and the relation between the Abstract

and the Physical world as mathesis.

to fyteuton kai to
skeuaston genosidea hypothesis eidos eikon

to tou nooumenou genos to tou horomenou genos 

Physical objectsImageFormHypothesisIdea

Abstract Physical 

Figure 43: Plato’s categories in Greek and in English.

Even though Plato preceded Aristotle (384-322 BC) also in metaphysics, Plato’s works
were widely studied in the Latin speaking Europe very much later than Aristotle’s works
on logic [5], which were translated by the Neoplatonist Boethius (c. 480-524AD) and
were studied already during the Roman Empire. Plato’s ’ultimate truth’ corresponds to
category Abstract, because he did not explicitly specify the universal type > which is
drawn on figure 43. Therefore, Plato’s categories could be represented also simply by
Abstract and its three subcategories, and by setting the physical objects as instances
of one or more successor of Abstract. Images could then be set as (sub)instances of
the physical objects.

85



Tree of Porphyry

The oldest known tree diagram that depicts a philosophical ontology was drawn by the
Greek philosopher Porphyry (circa 233-305 AD) in his Introduction to Categories, which
is a commentary on Aristotle’s Categories, that is again the first part of Aristotle’s Logic
[5]. It incorporated Aristotle’s logical foundations into Neoplatonism, and especially the
problem of universals and particulars44.

Figure 44 depicts John Sowa’s clarification [142, 143] of the Tree of Porphyry as it was
drawn by the logician Peter of Spain in 1329. It illustrates the categories under Sub-

stance, which is called the supreme genus or the most general category. Naturally,
Aristotle’s Substance corresponds to the universal type >. The tree also visually in-
troduced, or made a separation between the categories and the individuals (instances,
particulars).

Figure 44: The tree of Pophyry.

This visualization of Aristotle’s categories does not follow exactly the definition of the
category tree, but the same information can be represented with plain category tree
formalism as can be seen in figure 45 in p. 87, that is even simpler than the Tree
of Porphyry. And after all, the Tree of Porphyry is only a visualization of Aristotle’s
categories.

44Boethius’ Isagoge is a Latin translation of Porphyry’s Introduction to Categories. Boethius’ Isa-

goge became a standard medieval textbook that set the stage for medieval philosophical-theological
development of logic and the problem of universals.
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The category trees in figure 45 are all in correspondence with the Tree of Porphyry. The
viewer can reason the meaning of the categories even if they are not visually classified
with explicit relation-tags as in the Tree of Porphyry. Also the division to categories and
individuals is clear, even if there are no explicit tags that tell this.

Physical−Material

Beast−Irrational

Organic−Animate−Living Unorganic−Inanimate−Mineral

Animal−Sensitive

Human−Rational

Plant−Insensitive

Abstract−Immaterial

Socrates Plato Aristotle Socrates Plato Aristotle

Body Spirit

Living Mineral

Animal Plant

Human Beast

Substance

Socrates Plato Aristotle

Material Immaterial

Animate Inanimate

Sensitive Insensitive

IrrationalRational

Figure 45: These three visualizations show that the same information that is in the Tree
of Porphyry can be greatly simplified, yet not loosing any information.
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Wilkins’ Categories

The top level hierarchy of John Wilkins (1614-1672) is partly in resemblance with Aris-
totle’s categories as figures 46 and 47 reveal. The example in figure 46 is taken from
Wilkins’ 376-page book about the English grammar: An Essay Towards a Real Character
and A Philosophical Language [152].

The categories that are typed in capital letters and have a Roman index number in the
end are pointers to other category trees in the book. The book contains a large ontology,
i.e., similar kinds of categorizations than in figure 46 which are drawn from left to right
instead of top to bottom because of representational reasons.

Figure 46: Top level hierarchy of John Wilkins.
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The book is organized in four chapters: chapter 1 describes the history of language from
the fall of Tower of Babel until 1700’s, chapter 2 contains the ontology that defines
the meaning of words, chapter 3 explains the English grammar, i.e., how the categories
should be used in general, and chapter 4 gives examples of how the grammar is actually
applied in creation of English sentences. Examples that relate hundreds of other human
languages to the ontology are included.

There are many categories in Wilkins’ top level hierarchy similar to those of Aristotle,
but Wilkins has specified a greatly deeper hierarchy, and the meaning of Wilkins’ cat-
egories is harder to understand than of those few categories in the Tree of Porphyry.
Nevertheless, also Wilkins’ layout follows the rules of category tree. Figure 47 clarifies
some of Wilkins’ top level hierarchy, but understanding the whole tree would require
exploring the categories deeper in the hierarchy.

Mixed relation Action relation Transcendental general thing

Words/Discourse Transcendental things

Quantity Quality Action Relation

General or universal notionsSpecial

Creator 

Holy spiritSon Father

Creatures

Collectively/Universe

Corporeal

Without bodyWith body   

Spiritual

Distributively

Substances Accidents

Parts Circles Inanimate Animate

CelestialTerrestrial

InanimateAnimate

LandWater

Mineral Plant Animal ManHerb/Grass

Part Species

Vegetative Sensitive

Imperfect Perfect

Stone Metal Herb Shrub Tree

SanguinousExangiunous

BirdFish Beast

Figure 47: Clarification of a part of Wilkins’es top level hierarchy.

General or universal notions could be taken as Abstract of Plato’s tree and Imma-

terial of the Tree of Porphyry, and Special as Physical of Plato’s tree and Material

of the Tree of Porphyry, but since Accidents is a successor of Special, and Accident

clearly describes abstract things, this does not seem to be a clear case.

As can be seen, Wilkins ’used’ the idea of multiple inheritance of categories: there are
for example two paths of categories leading to classifications of animals and two paths
leading to classification of plants, as cab be seen on the bottom level of figure 47. The
classification of animals and plants are two of the deepest categorizations in Wilkins’
book.
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Brentano’s Tree

The next example shows another visualization of Aristotle’s categories. The tree in
Figure 48 is based on a diagram by Franz Brentano (1838-1917), originated in 1862
[142]. In the first treatise of Aristotle’s collected works [5], Aristotle presented ten
basic categories, which are shown as the leaves of the tree in Figure 51. To connect
the categories of Figure 48, Brentano added some terms taken from other works by
Aristotle, including the top node Being and the terms at the branching categories:
Accident, Property, Inherence, Directedness, Containment, Movement, and
Intermediacy.

Figure 48: Brentano’s tree of Aristotle’s categories.
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CYC

The top level categories of CYC [142, 27] in figure 49 are a clear example of how the
meaning of categories comes from the meaning of their successors and predecessors, and
how categories only describe things in contrast to each other.

Figure 49: Top level categories of CYC.

CYC (enCYClopedia) [100, 60, 27] was initiated in the 1980’s in course of providing
common-sense reasoning support for Artificial Intelligence programs. Cyc provides the
worldwide largest single formalized ontology, and can be seen as an extreme example
of high level of formalization, when WordNet (p. 92) and ODP (p. 92) provide a
low level of formalization. Hundreds of thousands of concepts have been formalized
with millions of logical axioms, rules, and other assertions, which specify constraints of
individual objects and classes. CycLanguage is used to express Cyc ontology. CycL’s
syntax is derived from first-order predicate calculus through the use of second-order
concepts. Predicates express relationships of the categories and other entities of CycL.
CycL has one universal quantifier forAll, and four existential quantifiers, thereExists,
thereExistAtLeast, thereExistAtMost, and thereExistExactly. Additional quantifiers can
be introduced by making the appropriate assertions. Logical connectives (and, or, and
not) are used to build more complex formulas from other formulas. New connectives
can be introduced simply by inserting a formula of that effect into the knowledge base.
CycL accommodates a variety of truth-values (default true, monotonically true, default
false, monotonically false, and unknown), fuzzy truth values, fuzzy attributes and sets,
and Bayesian probabilities and dependencies.

CycL is a highly expressive language, but the pay-off with the expressive power is the us-
ability and maintainability, which is the case also with early Description Logic Language
knowledge bases [108, 31]. CycL has a different scope and purpose than the Semantic
Web ontology languages for example, and is a lot of harder to take in use than these
simple languages disregarding the intended usage, and the maintaining task of CYC is
huge because of hundreds of thousands of axioms and complex rules. Description Logic
Languages like Cyc certainly have a place in the toolkit of a conceptual modeler but they
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have not gained much popularity as raw tools for conceptual modeling in the past [13].
The question remains: ”Can Cyc give answers to the questions our applications need or
do the distributed Semantic Web ontologies run over Cyc in the long run?”

Wordnet

WordNet was developed by the Cognitive Science Laboratory at Princeton University
[25, 39, 157]. WordNet is an on-line lexical reference system where English nouns, verbs,
and adjectives are organized into synonym sets, each representing one underlying lexical
concept. The initial idea of WordNet was providing aid in browsing dictionaries concep-
tually, instead of trying to brows dictionaries alphabetically. Therefore, WordNet can be
called a dictionary which is based on psycholinguistic principles.

WordNet divides the lexicon into five categories: noun, verb, adjective, adverb, and func-
tion word. WordNet organizes lexical information in terms of word meanings rather than
word forms. Therefore, semantic relationships are used for organization. Examples of
these relationships are synonym (similarity in meaning of words), antonym (dichotomy
in meaning of words, for example, victory versus defeat), homonym (is-a relationship
between words), meronym (part-of relationship between words), and morphological re-
lations to reduce word forms. WordNet does not provide any definitions of semantics
in a formal language, which leaves the definitions vague and limits the possibility for
automatic reasoning support. At last count, the WordNet had grown into an unprece-
dented web of 138,838 English words linked in hundreds of thousands of different ways.
A multilingual EuroWordNet [37] also exists in the meantime.

Open Directory Project

The Open Directory Project ODP [116] is the largest and most comprehensive human-
edited directory on the Web. It is increasingly used for searching and annotating Web
sites and is evolving all the time. ODP organizes Web sites in a category hierarchy. A
user can annotate a Web page starting from ODP’s top level hierarchy (fig. 50) that is
used as a hyperlink structure: a user goes deeper in the hierarchy simply by clicking the
currently presented categories. When the wanted category is found, the user can annotate
a URI with a title and a description of the site. The user can naturally only search for
something and not annotate anything. ODP is compared to text-based annotation and
retrieval systems in section 5. Currently there are about 590,000 categories and 4 million
site URI’s annotated in the system. ODP supports multiple inheritance of categories,
but does not support multi-instantiation, i.e., the ability to link a Web page to more
than one category. This causes more necessary pay-offs in the category structure than
with multi-instantiation. Currently a user can select only one category at a time, and
other categories are revealed to the users as recommendations that are based on the
successor-predecessor relationships of the categories.

ODP is hosted and administered by Netscape Communication Corporation, and is con-
structed and maintained by a vast, global community of over 61,000 volunteered editors,
which facilitates the commitment of a large group to the ontology. ODP powers the
core directory services for the Web’s largest and most popular search engines including
Netscape Search [111], AOL Search [4], Google [55], Lycos [106], HotBot [71], DirectHit
[30], and hundreds of others.
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Figure 50: Top level categories of ODP.

Recently, there has appeared public complaints about ODP’s editors subjectivity: if an
editor has a commercial firm that has been placed under the same category that he/she
edits, then the editor’s personal interests endanger the submission of similar firms to that
category. It can also take many months until the system properly accepts an annotation,
and the user gets no notifications about how the process of acceptance proceeds.
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Sowa’s Diamond

The last and the newest well known example of a philosophical category tree is called
Sowa’s Diamond, created by John F. Sowa (1940-) [142, 143, 59].

Sowa’s Diamond is very sophisticated and quite hard to understand at the first glance.
It clearly integrates the insights of very many philosophers quite successfully, because it
is not in contradiction with the other examples in this appendix, but only takes them
further.

It is the only example of a category tree here where there are more subcategories of
> than only Physical and Abstract. There are also Continuant-Occurrent and
Independent-Relative-Mediating, which correspond to Firstness, Secondness, Third-
ness (sect. 3.1.4) respectively. Even if these concepts are used as categories, the principle
of triads is applied with all the categories, i.e, Firstness, Secondness, and Thirdness can
be used also to explain the meaning of the categories.

There are not many categories that are typed with the same character strings than the
English translations of Aristotle’s categories, but many of Sowa’s categories have a similar
kind of meaning than Aristotle’s categories. In addition to the correspondences that
are clarified in the table in p. 85, the category that has been typed as Property in
Brentano’s tree, Slot and Attribute in CYC, and Accidents in Wilkins’ tree, have
been divided into three categories in Sowa’s Diamond: Actuality, Prehension, and
Nexus. Another similarity is that category Abstract has three subcategories in Sowa’s
Diamond: Form, Proposition, and Intention, which correspond to Plato’s Form,
Hypothesis, and Idea respectively.

The tree benefits also of multiple inheritance of categories as does Wilkins’ tree. If the
absurd type ⊥ is disregarded, the categories on the lowest level can be taken as the
leaves of the tree. The character strings that the titles of the leaves consist of could be
changed, yet not changing the meaning of them: Schema could be turned into Domain

or Context, Description into Wiewpoint, and Reason into Goal or Objective.

Figure 51: Sowa’s Diamond
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